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 This study investigated the effectiveness of machine learning 

and deep learning models in diagnosing imbalance faults in 

industrial machines, using Fast Fourier Transform (FFT) for 

frequency-based feature extraction. As imbalance shortens 

equipment life and increases maintenance costs, vibration data 

was analysed and frequency components were extracted using 

FFT for classification. Support Vector Machine, Random Forest 

and Multi-Layer Perceptron models were then compared using 

the metrics of accuracy, precision, recall and F1 score. The 

Multi-Layer Perceptron model performed best with 99% 

accuracy, capturing the patterns extracted by FFT most 

effectively. Random Forests made successful predictions, but 

had a high error rate in some classes. Support Vector Machines, 

on the other hand, offered lower accuracy. Combining FFT with 

machine learning contributes to the diagnosis of faults in rotating 

machines. Model performance could be improved in future using 

larger data sets, hyperparameter optimisation and methods such 

as wavelet transformation. 
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 Bu çalışmada, endüstriyel makinelerde dengesizlik hatalarının 

teşhisinde makine öğrenimi ve derin öğrenme modellerinin 

etkinliği incelenmiş, frekans tabanlı özellik çıkarımı için Hızlı 

Fourier Dönüşümü (FFT) kullanılmıştır. Dengesizlik, ekipman 

ömrünü kısaltıp bakım maliyetlerini artırdığından, titreşim 

verileri analiz edilerek FFT ile frekans bileşenleri çıkarılmış ve 

sınıflandırma yapılmıştır. Destek Vektör Makinaları, Rastgele 

Ormanlar ve Çok Katmanlı Algılayıcı modelleri; doğruluk, 

hassasiyet, geri çağırma ve F1-skoru metrikleriyle 

karşılaştırılmıştır. Çok Katmanlı Algılayıcı, %99 doğrulukla en 

iyi performansı göstermiş, FFT ile çıkarılan örüntüleri en iyi 

yakalamıştır. Rastgele Ormanlar başarılı tahminler yapmış ancak 

bazı sınıflarda hata oranı yüksek bulunmuştur. Destek Vektör 

Makinaları ise daha düşük doğruluk sunmuştur. FFT ve makine 

öğrenimi kombinasyonu, döner makine arıza teşhisine katkı 

sağlamaktadır. Gelecekte, daha büyük veri setleri, 

hiperparametre optimizasyonu ve dalgacık dönüşümü gibi 

yöntemlerle model performansı artırılabilir. 
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1. INTRODUCTION 
 

Imbalance faults, which are common in machine systems, reduce equipment performance, increase 

vibration levels and cause serious productivity losses in industrial processes due to increased maintenance 

costs. If such imbalance faults in machine elements are not detected and eliminated at an early stage, 

unexpected equipment failures may occur, resulting in long-term downtime in production processes. 

Therefore, the development of effective methods for diagnosing and preventing imbalance-related problems 

is of great importance for the reliability and sustainability of industrial applications. Improving the accuracy 

of fault diagnosis, particularly through the use of methods such as vibration analysis, signal processing 

techniques and artificial intelligence-based approaches, can make a significant contribution to extending 

the life of machinery and reducing operating costs. 

 

In recent years, machine learning and artificial intelligence-based approaches have gained an important 

place in fault diagnosis and predictive maintenance processes [1]. Traditional methods are usually based 

on expert knowledge and cannot provide sufficient efficiency in automated decision-making processes with 

large data sets. In particular, the use of vibration analysis, signal processing techniques and deep learning-

based models allows for more accurate detection of imbalance faults [2]. 

 

Accordingly, several studies have been conducted to evaluate the impact of different machine learning 

algorithms on fault diagnosis. Recent studies have shown that classification algorithms such as Support 

Vector Machines (SVM), Random Forest and Multilayer Perceptron (MLP) provide high accuracy in 

imbalance fault diagnosis [3]. However, a detailed comparison of model performance and their integration 

into industrial processes is of great importance for the development of an effective fault diagnosis approach 

[4]. 

 

In this study, a machine learning based model for imbalance fault diagnosis is developed, Fast Fourier 

Transform (FFT) is used for frequency-based feature extraction and the most appropriate method is 

determined by comparing different algorithms. The data set used consists of a wide range of vibration 

measurements including imbalance scenarios under different operating conditions. The time domain signals 

are decomposed into frequency components using FFT. Through this transformation, important frequency 

components in the vibration data are extracted as features and given as input to the classification algorithms. 

Three different classification algorithms such as SVM, Random Forest and MLP were used to evaluate the 

success of the model and the results obtained were compared using metrics such as accuracy, precision, 

recall and F1 score. By combining FFT with frequency-based feature extraction and machine learning 

techniques, the model proposed in the study aims to support early diagnosis in industrial maintenance 

processes, contribute to the prevention of machine failures and reduce maintenance costs.  
 

2. LITERATURE REVIEW 
 

In this section various studies have addressed data generation and balancing techniques to solve the 

imbalanced data problem, and especially the effectiveness of deep learning-based methods in this area has 

been examined. 

 

Zhang et al. addressed the issue of imbalanced data in machine fault diagnosis using generative adversarial 

networks (GANs). By generating realistic synthetic data, the model's generalization ability was enhanced, 

enriching the training dataset. Tests on rotating machinery datasets validated the effectiveness of this 

approach [5]. 

 

Jiang et al. developed a temporal-spatial multi-order weighted graph convolution network (TSMOW-GCN) 

to improve fault diagnosis under imbalanced data conditions. The model enhances feature associations 

within graph structures and aggregates high-order neighborhood information, avoiding traditional data 

generation approaches [6]. 

 

Zhao et al. introduced an improved weighted extreme learning machine (IWELM) with an adaptive cost-

sensitive strategy for fault diagnosis with imbalanced data. The model optimizes a cost-sensitive matrix 

and employs a multi-objective optimizer, improving classification performance, especially for minority 

classes [7]. 
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Jia et al. proposed a deep normalized convolutional neural network (DNCNN) to address imbalanced fault 

classification in machinery diagnosis. The framework integrates a weighted softmax loss function to 

counter class imbalance and uses neuron activation maximization (NAM) for improved interpretability. 

Experiments show that DNCNN outperforms conventional CNN-based models [8]. 

 

He et al. applied contrastive feature-based deep reinforcement learning (D3QN) for imbalanced fault 

quantitative diagnosis under variable working conditions. By integrating SimCLR-based contrastive 

learning with prioritized experience replay, the model optimally learns discriminative features while 

addressing dataset imbalance [9]. 

 

Shi et al. proposed a graph embedding-based deep broad learning system (GEDBLS) for fault diagnosis 

with imbalanced data in rotating machinery. The model improves the classification loss function by 

considering class weights and intra-class compactness. Experiments confirm the model's superior feature 

extraction and data imbalance processing capabilities [10]. 

 

Pan et al. introduced a robust smooth constrained matrix machine (RSCMM) for fault diagnosis of roller 

bearings under imbalanced data conditions. The model employs a dynamically adjusted loss term to 

improve classification performance, mitigate noise impact, and accelerate convergence. Experimental 

results show that RSCMM achieves high accuracy under different imbalance ratios [11]. 

 

Wang et al. proposed a trackable multi-domain collaborative generative adversarial network (TMCGAN) 

for rotating machinery fault diagnosis under imbalanced conditions. The model improves data 

augmentation by integrating multi-domain feature learning and parallel frequency loss, enhancing 

classification credibility and interpretability [12]. 

 

Wu et al. introduced a holistic semi-supervised method for imbalanced fault diagnosis with out-of-

distribution samples. Their framework uses pseudo-labelling and consistency regularization combined with 

an adaptive threshold to enhance class confidence balancing and robustness in real-world industrial 

applications [13]. 

 

Lin et al. developed a generalization classification regularization generative adversarial network 

(GCRGAN) to tackle data imbalance in machinery fault diagnosis. The model incorporates a generalization 

module and a novel regularization loss to improve sample diversity and stability under limited training data 

scenarios [14]. 

 

Yang et al. proposed an improved generative adversarial network (IGAN) combined with an enhanced deep 

extreme learning machine (EDELM) for chiller fault diagnosis under imbalanced data conditions. The 

method integrates multi-head attention (MHA) in GAN and adaptive boosting (AdaBoost) for sample 

weighting, achieving high classification accuracy [15]. 

 

Chang et al. designed an extended attention signal transformer with adaptive class imbalance loss (EAST-

ACIL) to address long-tailed data distribution in rotating machinery fault diagnosis. The framework 

enhances feature extraction using CNN-transformer architecture while dynamically reweighting training 

data to prioritize rare fault classes [16]. 

 

Li et al. introduced an auxiliary classifier Wasserstein generative adversarial network with gradient penalty 

(ACWGAN-GP) for rotating machinery fault diagnosis under data imbalance. The method generates high-

quality synthetic fault samples to balance datasets, improving model accuracy [17]. 

 

3. MATERIAL AND METHOD  
 

3.1. Dataset 

 

The MAFAULDA (Machinery Fault Database) consists of 1951 multivariate time-series data collected 

using the SpectraQuest Alignment-Balance-Vibration (ABVT) Machinery Fault Simulator (MFS). The 

dataset includes six different machine states: normal operation, imbalance, horizontal and vertical 

misalignment, and inner and outer bearing faults. These conditions were systematically simulated to 

provide a comprehensive dataset for fault diagnosis in rotating machinery [18]. 
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Imbalance faults were introduced by attaching additional weights ranging from 6 g to 35 g to the rotor. The 

data collection process maintained the same 49 different rotational speed levels used for normal operation. 

However, for weights 30 g and above, excessive vibration limited the system’s maximum operational speed 

to 3300 rpm due to stability concerns. The measurements for each imbalance weight condition are detailed 

in the Table 1 below: 

 

Table 1. Weight distribution and number of measurements 

Weight (g) Number of measurements 

6 49 

10 48 

15 48 

20 49 

25 47 

30 47 

35 45 

Total 333 

 

Each dataset instance consists of 5 seconds of recorded data at a 50 kHz sampling rate, totaling 250000 

samples per measurement. The imbalance fault conditions were tested using a 1/4 HP DC motor operating 

within a 700-3600 rpm speed range. The test system, weighing 22 kg, included a 16 mm diameter shaft 

with a 520 mm shaft length, while the rotor diameter measured 15.24 cm, and the bearing span was 390 

mm. 

 

The data acquisition system incorporated various sensors to capture machine dynamics: 

 

 Accelerometers: Three IMI Sensors Model 601A01 were used to measure radial, axial, and 

tangential vibrations, while a triaxial IMI Sensors Model 604B31 captured three-dimensional 

acceleration data. 

 Tachometer: A Monarch Instrument MT-190 analog tachometer was employed for speed 

measurement. 

 Microphone: A Shure SM81 microphone recorded audio data within a 20 Hz - 20 kHz frequency 

range. 

 Data Acquisition Modules: Two National Instruments NI 9234 modules were utilized, operating 

at a 51.2 kHz sampling rate to collect vibration, speed, and audio signals. 

 

3.2. FFT 

 

The Fourier transform is a powerful mathematical tool that decomposes a signal in the time domain into its 

frequency components. This transform, in both continuous and discrete versions, is used in many areas of 

engineering and science [19]. The Discrete Fourier Transform (DFT) is used for frequency analysis of 

finite-length signals, and the FFT is an algorithm that optimises the computational process of the DFT [20]. 

The DFT is defined as 

 

𝑋[𝑘] = ∑ 𝑥[𝑘]

𝑁−1

𝑛=0

𝑒−𝑗(2𝜋/𝑁)𝑘𝑛 (1) 

 

Through DFT, the signal can be decomposed into amplitude and phase information of different frequency 

components, where X[k] is the signal in the frequency domain after Fourier transform, x[n] is the n th data 

point in the signal in the time domain, N is the total number of data points, and j is the imaginary unit. 

 

3.3. SVM Model 

 

SVM is a supervised learning technique that is effectively used in data classification and regression 

problems [21]. SVM performs classification by determining the best hyperplane that separates data points 

[22]. This hyperplane is chosen to maximise the margin between two classes. For a linearly separable data 

set, the hyperplane is expressed as follows: 
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𝜔𝑇𝑥 + 𝑏 = 0 (2) 

𝑚𝑖𝑛𝜔,𝑏

1

2
‖𝜔‖2    |    𝑦𝑖(𝜔𝑇𝑥𝑖 + 𝑏) ≥ 1, ∀𝑖    (3) 

 

In the equation, ω is the direction that determines the normal vector of the hyperplane that distinguishes 

which class the data points belong to. The x is the input feature vector that represents each data point. The 

bias term b optimises the classification process by adjusting the position of the hyperplane. 

 

3.4. RF Model 

 

Random forest is an ensemble learning method based on decision trees and is used in both classification 

and regression problems [23]. The model created by combining several decision trees provides higher 

accuracy and generalisation ability than a single tree [24]. For classification, the prediction of the model is 

expressed as follows: 

 

𝑦̂ =
1

𝑇
∑ ℎ𝑡(

𝑇

𝑡=1

𝑥) (4) 

 

Where T is the total number of trees, ℎ𝑡(𝑥) is the prediction class and 𝑦̂ is the class label. Random forest 

uses random subsampling (bootstrapping) and random feature selection during training for each tree to 

increase the diversity of decision trees and avoid overlearning. This method is particularly successful on 

large and complex datasets. 

 

3.5. MLP Model 

 

MLP is a feedforward Artificial Neural Network model with a fully connected structure and is a powerful 

deep learning architecture widely used for tasks such as learning and classifying complex non-linear 

relationships [25]. In this study, an artificial ANN model with MLP architecture is used. The model is 

designed to solve a multi-class classification problem and has a deep network structure consisting of six 

hidden layers. Rectified Linear Unit (ReLU) activation function is used in each hidden layer of the model 

and Softmax activation is preferred in the output layer for multi-class prediction. The weights of the model 

were initially assigned using the random uniform distribution method and trained using the Adam 

optimisation algorithm. The loss function used was sparse_categorical_crossentropy, which is widely used 

in multiclass classification problems. In addition, an early stopping mechanism was added to minimise the 

risk of overfitting and to prevent unnecessary prolongation of the training process if no improvement is 

observed within the specified tolerance level. The labels in the input to the model are processed with 

LabelEncoder and converted into numerical form to convert them into a format suitable for machine 

learning models. The proposed model is a fully connected neural network structure and is applicable to 

classification tasks on a large dataset. 

 

3.6. Performance Metrics 

 

To evaluate the success of machine learning models, key performance metrics such as precision, recall, 

accuracy, and F1 score are used [26,27]. These metrics are critical for measuring the predictive ability of 

the model and analysing classification errors. TP (True Positive), TN (True Negative), FP (False Positive) 

and FN (False Negative) values are required for the calculations. 

 

Accuracy is the ratio of the number of samples correctly predicted by the model to the total number of 

samples and is calculated as follows: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (5) 
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Precision, The proportion of samples predicted to be positive by the model that are actually positive: 

 

𝐹1𝑠𝑐𝑜𝑟𝑒 =
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 (6) 

 

4. EXPERIMENTAL RESULTS 
 

In the experimental studies, SVM, RF and MLP models were used to evaluate the classification 

performance of imbalance errors. Performance metrics such as accuracy, precision, recall and F1-score 

were calculated and compared to measure the success of the models. The learning processes of each model 

were examined by analyzing the accuracy and loss values during the training process. In addition, the 

confusion matrix was used to determine the incorrect predictions between classes and the classification 

ability of the model was evaluated in detail. 
 

 
Figure 1. Distribution of attributes in the frequency spectrum 

 

Figure 1 shows histograms showing the distribution of different features in the dataset. These histograms 

provide information about the overall structure of the dataset by visualising the frequency of values for 

each variable. The figure shows that some features are close to a normal distribution, while others are 

skewed to the right or left. In particular, the histograms in the top rows are bell-shaped and close to a normal 

distribution, while some variables in the bottom rows show significant skewness and irregularity. 

 

These distributional analyses provide important information that should be taken into account as the model 

learns. While normally distributed characteristics allow the model to learn more consistently, skewed 

distributions can negatively affect the learning process. In addition, the presence of a high number of 

outliers in some variables may reduce the generalisation ability of the model and may require the application 

of special techniques in the data pre-processing phase. 

 

In this context, scaling and transformation of features is an important step to improve model performance. 

In particular, methods such as Min-Max normalization or StandardScaler can make the data distribution 

more balanced. For variables with skewed distributions, techniques such as log or square root 

transformation can be applied to enable the model to learn these variables more efficiently. In conclusion, 
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the histogram analysis presented in Figure 1 plays a critical role in understanding the structure of the dataset 

and determining appropriate data preprocessing strategies. 
 

 
Figure 2. Correlation matrix between attributes 

 

Figure 2 shows the correlation matrix, which visualises the relationship between the attributes in the dataset. 

The values in the cells represent the Pearson correlation coefficient between pairs of variables. Values range 

from -1 to 1, with values close to 1 indicating a strong positive correlation and values close to -1 indicating 

a strong negative correlation. Light blue shades represent low correlation and dark blue shades represent 

high correlation. 

 

In the figure, high correlations (e.g. 0.85, 0.77) are observed between some variables, which may indicate 

that these attributes carry similar information. On the other hand, the correlation values between some 

variables are quite low (e.g. 0.01-0.03), suggesting that these variables are independent. This analysis can 

help to remove unnecessary or highly correlated variables in the feature selection process and increase the 

generalisation ability of the model. 
 

  

a) 
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b) 

  

c) 

Figure 3. Model accuracy and loss during training and validation. a) SVM, b) RF, c) MLP 

 

Figure 3 shows the accuracy and loss values of the SVM, Random Forest and MLP models in the training 

and validation phases. While all three models have generally high accuracy rates, the MLP model (Figure 

3-c) shows the most stable learning process. Especially from the early epochs, the accuracy values increase 

rapidly and the training and validation accuracies are very close to each other. The loss graph shows that 

MLP achieved the lowest loss value compared to the other models and completed the learning process in 

the most balanced way. 

 

The Random Forest model (Figure 3-b) showed a rapid increase in accuracy during the training process and 

the validation accuracy also reached a high level. However, the fluctuations seen in the loss plot suggest 

that the model has more variance in some epochs and does not perform fully balanced learning. The SVM 

model (Figure 3-a), on the other hand, is successful in terms of accuracy, but the difference between the 

training and validation accuracies is relatively larger in the early epochs, suggesting that the model initially 

follows a more erratic learning process. Overall, the MLP model had the most stable learning process and 

achieved high accuracy with lower loss compared to the other models. Due to its deep learning based 

structure, it has a strong ability to learn more complex patterns in the data. 

 

Table 2. Metrics for the classification performance of the models 

Algoritma Accuracy Precision Recall F1score 

SVM 0.96 0.96 0.96 0.96 

RF 0.98 0.98 0.98 0.97 

MLP 0.99 0.99 0.99 0.99 

 

Table 2 shows the accuracy, precision, recall and F1 scores calculated to evaluate the classification 

performance of the SVM, Random Forest and MLP models. Although all three models have high accuracy 

rates, the MLP model performed best by achieving the highest value in all metrics. 
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The Random Forest model showed a consistent classification performance with an accuracy of 98% and 

outperformed the SVM model in all metrics. The SVM model, on the other hand, performed a successful 

classification with an accuracy rate of 96%, but it was observed that it had lower metric values compared 

to the other models. 

 

Overall, the MLP model achieved the highest success with 99% accuracy, precision, recall and F1 score. 

These results show that MLP has a high learning capacity in complex data structures and is more successful 

than other models in classification tasks. 
 

  
a) b) 

 
c) 

Figure 4. Confusion matrix showing the classification performance of the models. a) SVM, b) RF, c) 

MLP 

 

Figure 4 shows the confusion matrices generated to compare the classification performance of the SVM, 

Random Forest and MLP models. Although all three models have generally high accuracy rates, the MLP 

model (Figure 4-c) has the best classification performance. In particular, it had the lowest error rate in the 

Normal (0) and Imbalance (1) classes, minimising misclassifications. 

 

The Random Forest model (Figure 4-b), although providing high accuracy in general, made more incorrect 

predictions, especially in the Misalignment (2) class. Due to its decision tree-based structure, it has 

difficulty discriminating between some classes. The SVM model (Figure 4-a), on the other hand, made 

more incorrect predictions than the other models, especially in the Misalignment (2) class, indicating that 

the model has difficulty discriminating between some classes. 
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The MLP model achieved the highest accuracy rate and performed more evenly across classes. Thanks to 

its deep learning-based structure, it has a high capacity to learn more complex data patterns. 

 

Table 3. Bootstrap 95% confidence intervals for classification performance metrics 

 

Model 
95% CI 

(accuracy) 

95% CI 

(precision) 
95% CI (Recall) 

95% CI 

(F1score) 

SVM 0.949–0.971 0.948–0.971 0.949–0.971 0.949–0.971 

RF 0.973–0.987 0.973–0.987 0.973–0.987 0.969–0.985 

MLP 0.985–0.995 0.985–0.995 0.985–0.995 0.985–0.995 

 

Table 3 presents the 95% confidence intervals (CI) for the classification performance metrics—Accuracy, 

Precision, Recall, and F1-score—of the SVM, RF, and MLP models. The CIs were computed using 

bootstrap resampling with n = 300 iterations, providing a robust estimation of the variability in model 

performance. The results demonstrate that the MLP model achieved the narrowest confidence intervals 

across all metrics, indicating a high degree of stability and consistency in its predictions. The RF model 

also exhibited strong and reliable performance with relatively tight intervals, whereas the SVM model, 

despite slightly wider intervals, maintained competitive classification accuracy and balanced metric values. 

 

Table 4. Hyperparameter search ranges, final selections, and rationale for each model 

Component Search range / limit Final selection (example) Rationale 

SVM (RBF) C ∈  [10-3, 103] , γ ∈  [10-4, 101], 

kernel=RBF 
 C=10, γ=0.01 

 5-fold CV Macro-F1, 

Accuracy; CI 

narrowing 

Prevents overfitting 

while maintaining a 

stable decision 

boundary 

Random 

forest 

n_estimators ∈  {200, 400, 800}; 

max_depth ∈  {None, 10, 20, 40}; 

min_samples_split ∈  {2,5,10}; 

max_features ∈  {sqrt, log2}; 

bootstrap=True 

 n_estimators=400, 

max_depth=20, 

max_features=sqrt 

 5-fold CV Macro-F1; 

training time 

Variance-bias 

balance and stable 

performance across 

classes 

MLP  Layers: 3–6; Neurons: 

{256,128,64,32}; Dropout: 0.2–

0.5; Norm: Batch/Layer (opt.); 

L2: {0, 10-5, 10-4}; Epoch ≤ 200, 

min_delta=10-4; LR: 10-3→10-4 

(plateau) 

 256-128-64, 

Dropout=0.3, BN 

included, L2=10-5,  

 5-fold CV Macro-F1 

& Accuracy; CI 

narrowing; training 

time 

Highest accuracy + 

narrow CI; prevents 

overfitting 

 

Table 4 summarizes the hyperparameter search spaces, the final selected configurations, and the rationale 

for each model. The selection process prioritized high classification performance, narrow bootstrap 

confidence intervals, and prevention of overfitting, while ensuring balanced performance across all classes. 

 

5. CONCLUSION 
 

This study compares the performance of machine learning and deep learning-based models for imbalance 

fault diagnosis using FFT for frequency-based feature extraction. In the experimental process, SVM, 

Random Forest and MLP models were applied and their classification performance was evaluated using 

metrics such as accuracy, precision, recall and F1 score. Confusion matrices and model learning processes 

were investigated and the strengths and weaknesses of each model were analysed. In the study, time domain 

vibration data was decomposed into frequency components using FFT and these components were used as 

input to the classification models. In this way, imbalance faults can be more accurately distinguished on 

the basis of distinct frequency features. According to the results obtained, the MLP model has the highest 

accuracy rate and the lowest error rate, and has the best performance in identifying imbalance faults by 

learning the features extracted by FFT in the best way. Thanks to its deep learning-based structure, it was 

found to have a greater ability to learn complex patterns by better modelling the relationships between 

frequency components. The Random Forest model generally made successful predictions, but the false 

prediction rate remained relatively high in some classes. Although the SVM model had a stable learning 
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process, it achieved lower accuracy values compared to the other models. This study demonstrates how 

machine learning and deep learning-based models can be used in rotating machinery fault diagnosis by 

extracting frequency components with FFT and comparatively evaluates the effectiveness of different 

algorithms. In the future, the generalisation capability of the models can be increased by using larger and 

more diverse data sets, and the performance of the models can be further improved by hyper-parameter 

optimisation. In addition, the accuracy rates for imbalance fault detection can be further improved by using 

different time-frequency transforms (e.g. wavelet transform) or advanced deep learning architectures. 
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