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Hidden Markov Models (HMMs) are widely used in many 
sequential decision-making problems due to their ability to 
model time-related dependencies. The standard decoding 
methods in these models, such as the Viterbi algorithm, are 
limited by their dependence on past observations only.  Thus, 
this leads to unpredictability when future information is 
available. In this work, we propose a decoding strategy called 
Beam-Limited k-Step Lookahead that looks k-step ahead, 
drawing parallels to k-step discrete control synthesis, to make 
use of future information. The proposed method achieves a 
balance between decoding accuracy and computational 
complexity by constraining the search space to the top M most 
promising paths. Experimental results on synthetic HMM data 
show that our new decoding strategy significantly improves 
decoding accuracy over classical Viterbi decoding. The findings 
highlight the potential of this new strategy to improve the 
performance of sequential decoding systems. 
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Gizli Markov Modelleri (HMM'ler), zamanla ilgili bağımlılıkları 
modelleme yetenekleri nedeniyle birçok ardışık karar verme 
probleminde yaygın olarak kullanılır. Bu modellerdeki standart 
kod çözme yöntemleri, Viterbi algoritması gibi, yalnızca geçmiş 
gözlemlere olan bağımlılıklarıyla sınırlıdır. Bu nedenle, 
gelecekteki bilgiler mevcut olduğunda öngörülemezliğe yol 
açar. Bu çalışmada, gelecekteki bilgileri kullanmak için (yani 
kontrol teorisindeki k-adımlı ayrık kontrol sentezine benzer bir 
yaklaşımla) k-adım ileriyi gören Işın Sınırlı k-Adım İleriye 
Bakış adı verilen bir kod çözme stratejisi öneriyoruz. Önerilen 
yöntem, arama alanını en umut verici M yolla sınırlayarak kod 
çözme doğruluğu ve hesaplama karmaşıklığı arasında bir denge 
sağlar. Sentetik HMM verileri üzerindeki deneysel sonuçlar, 
yeni kod çözme stratejimizin kod çözme doğruluğunu klasik 
Viterbi kod çözmeye kıyasla önemli ölçüde iyileştirdiğini 
göstermektedir. Bulgular, bu yeni stratejinin ardışık kod çözme 
sistemlerinin performansını iyileştirme potansiyelini 
vurgulamaktadır. 
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1. INTRODUCTION 
 
The utilization of machine learning-based models in scientific research has become firmly settled. Up-to-
date works are now directed towards enhancing the effectiveness and efficiency of existing Machine 
Learning (ML) models through the combination of different models or tools.  As is well-known, the Hidden 
Markov Model (HMM) is considered a powerful ML tool employed for modeling sequential data in several 
fields such as speech recognition[1], bioinformatics[2], and handwriting recognition[3]. 
 
Three distinct algorithms are employed for three fundamental problems in HMM. The decoding problem, 
which is the central focus of this study, is typically solved by the Viterbi algorithm. The algorithm gives 
the most probable sequence of underlying hidden states as its output given a sequence of observations [4]. 
However, the standard Viterbi algorithm, exclusively uses the past observations. Due to its inherent 
structure rooted in the Markov assumption, it potentially ignores the future observations. This causal 
dependency means that Viterbi cannot leverage potentially rich information contained in subsequent 
observations by its design. This aspect leads to suboptimal state estimations in scenarios where future 
context is available and relevant. This limitation naturally leads us to the following question: In the context 
of the decoding problem, could knowledge of observations a few steps into the future help us to determine 
more optimal and probable sequence of hidden states? 
 
To find a proper answer to this question, we introduce a k-step lookahead decoding strategy that 
incorporates future knowledges when performing state estimations with the decoder algorithm. We 
suppsose that utilizing information from the future in this manner will yield a more accurate estimation of 
the most likely hidden state sequence. However, a significant challenge arises in the computations: the 
computational complexity of the k-step lookahead calculation increases exponentially with the depth of k. 
Adapting a model that performs such expensive calculations to real-world applications will be difficult. 
 
Effectively overcoming the computational complexity induced by the depth of the k value requires strategic 
method. Thus, we integrate the beam search pruning technique into the lookahead process. This method 
allows us to keep only the M most promising paths at each step, thereby aligning with the fundamental 
objective of decoding, which is to retain the path with the highest probability among the current 
possibilities. The proposed method offers a scalable framework that adeptly balances accuracy and 
computational efficiency. 
 
Our work is determined by combining k-step lookahead with beam pruning in a lightweight and efficient 
manner. It is specifically applied for HMM decoding without the need for retraining or model restructuring. 
 
1.1. Related Work 
 
There are several works that have been proposed to improve decoding performance in Hidden Markov 
Models. The Viterbi algorithm [5] is the classical approach, finding the most likely sequence of hidden 
states based on given observations. However, this method does not exploit the information of future 
observations. 
 
Lookahead decoding techniques have been investigated to address the use of future information. For 
instance, k-step lookahead strategies, as studied in [6] where the proposed decoder method uses future 
observations to improve prediction accuracy. The difference between this work and ours is positioning 
based on the lookahead module. Their approach depends on depth-first search and our study's lookahead is 
based on k-step discrete controller synthesis. We perform the decoding operation with a discrete controller 
for the decoding problem. 
 
Beam search is a heuristic method widely used in natural language processing. [7] provides a practical 
solution by limiting the number of paths considered during decoding. Some works have applied beam 
search to sequence models [8,9]. However, in their works, integration with k-step lookahead has been 
limited. 
 
Other approaches, such as particle filtering [10] and deep learning-based sequence models [11], have been 
studied for sequential decoding. Yet, these methods require large-scale computational resources. 



 Mehmet KURUCAN 

 Ç.Ü. Müh. Fak. Dergisi, 40(3), Eylül 2025 - 547 - 

1.2. Related Work 
 
The remainder of this paper is organised as follows: Section 2 formally defines the problem, Section 3 
describes the proposed method, Section 4 presents experimental evaluations, Section 5 discusses the results, 
and Sections 6 conclude with insights and future directions. 
 
2. PROBLEM DEFINITION  
 
An HMM is a well-known ML tool that provides a probabilistic framework for modelling sequential data, 
where transitions of the system between hidden states while emitting observable outputs [12]. The goal of 
HMM-based decoding is to determine the most probable sequence of hidden states that could have 
generated a given sequence of observations [5]. This is called Decoding Problem which is one of the 
classical problems of HMM. This is commonly solved using the Viterbi algorithm, which applies dynamic 
programming to identify the proper state path. However, the structure of the standard Viterbi is inherently 
causal [2]. It means that it only depends on the previous condition. Thus, its predictive capability is limited 
when future information is known and available. Yet, directly apply lookahead idea into into the decoding 
process increases computational complexity dramatically. In this point, we need an efficient decoding 
strategy to utilize the future observations without suffering from exponential cost. Thus, we propose a novel 
decoding approach to addresses this problem. 
 
2.1. Definition of Hidden Markov Model 
 
Hidden Markov Model (HMM) is defined by the following components [13]: 
 

 A finite set of hidden states : 𝑆  ൌ  ሼ𝑠ଵ, 𝑠ଶ, … , 𝑠ேሽ, 
A finite set of observations: 𝑂  ൌ  ሼ𝑜ଵ, 𝑜ଶ, … , 𝑜ெሽ, 

 A transition probability matrix: 𝐴  ൌ  ൣ𝑎௜௝൧, where 𝑎௜௝ ൌ 𝑃൫ 𝑞௧ାଵ ൌ 𝑠௝  ∣∣  𝑞௧ ൌ 𝑠௜ ൯ 
 An emission probability matrix: 𝐵 ൌ ൣ𝛽௝ሺ𝑘ሻ൧,wher𝑏௝ሺ𝑘ሻ ൌ 𝑃൫ 𝑜௧ ൌ 𝑜௞  ∣∣  𝑞௧ ൌ 𝑠௝ ൯e, 
 An initial state distribution: 𝜋  ൌ  ሾ𝑞௜ሿ, where 𝑞௜  ൌ  𝑃ሺ𝑞଴ ൌ 𝑠௜ሻ. 
 
The goal is to decode the most probable hidden state sequence  𝑄  ൌ  ሺ𝑞଴,  𝑞ଵ, … , 𝑞்ሻ depending on given 
obervation sequence 𝑂  ൌ  ሺ𝑜ଵ,  𝑜ଶ, … , 𝑜்ሻ. 
 

 
Figure 1. HMM structure showing transitions between hidden states 𝑞௧ and corresponding emissions 𝑜௧ 

 
2.2. Standard Viterbi Algorithm 
 
The standard decoding algorithm, Viterbi, is a dynamic programming approach to find the most probable 
hidden state sequence depending on given observation sequence. The formal computation is [14]; 
 
𝑸෡ ൌ 𝒂𝒓𝒈𝐦𝐚𝐱

𝑸
𝑷ሺ𝑸|𝑶ሻ (1)

It defines; 
 
𝜹𝒕ሺ𝒋ሻ ൌ 𝐦𝐚𝐱

𝒒𝟏,…,𝒒𝒕ష𝟏 
𝑷ሺ𝒒𝟏, … , 𝒒𝒕ି𝟏, 𝒒𝒕 ൌ 𝒔𝒋, 𝒐𝟏, … , 𝒐𝒕ሻ (2)
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The steps of this algorithm are; 
 
 Initial step: 𝛿ଵሺ𝑗ሻ ൌ 𝜋௝𝑏௝ሺ𝑜ଵሻ 
 
 Recursion step: 𝛿௧ሺ𝑗ሻ ൌ max

௜
ൣ𝛿௧ିଵሺ𝑖ሻ𝑎௜௝൧𝑏௝ ሺ𝑜௧ሻ 

 
The optimal path is reconstructed using backtracking when t=T.  
 

 
Figure 2. Viterbi decoding as dynamic programming over possible state paths that are illustrated with red 

arrows 
 
2.3. Limitations and Definitions of the Proposed Model 
 
The standart decoding algorithm oh HMM is optimal under the assumption that only past informations (i.e. 
observations) are known [15]. Thus, it does not exploit the future observations during the process. On the 
other hand, while our proposed model facilitates the consider of future steps into the calculation, thus 
offering a novel strategy for decoding, extending the lookahead by k steps leads to an exponential increase 
in computational complexity. 
 
The problem statement:  

 Given : 
o A HMM (𝐴, 𝐵, 𝜋) 
o An observation sequence 𝑂  ൌ  ሺ𝑜ଵ, … , 𝑜்ሻ 
o A desired lookahead depth 𝑘  
o A beam width constraint 𝑀  

 Design a decoding  
o Use 𝑘 -step lookahead to consider future observations 
o Avaoids exponential computation  
o Use near-optimal 𝑀 value within practical runtime 

 
This work proposes a novel decoding approach that directly addresses this problem via a beam-limited 
lookahead mechanism. The core challenge we tackle is utilizing k-step future observations efficiently while 
bounding computational complexity through beam pruning. The k-step lookahead strategy employed in this 
work can be designed as a form of k-step discrete control synthesis. This approach arises from the decision-
making process at each time step. The system synthesizes a sequence of future hidden states where 
maximizes the overall likelihood of the gıven future observatıons. This process analogous to a controller 
optimizing future actions based on predicted states. Unlike traditional depth-first search (e.g. as [6]) 
methods that might explore all branches exhaustively, our approach implicitly guides this "synthesis" 
through probabilistic maximization. With this way, the proposed method prepares the beam pruning to 
efficiently manage the search space. 
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3. METHOD  
 
In this section, we detail our proposed model, including definitions of the tools employed and their 
operational principles. As illustrated by the model's name, we will begin by defining the k-step lookahead. 
Next, we will discuss the application of beam search pruning to reduce the computational cost associated 
with the k-step. To clarify the operational principle, we will present a pseudocode representation and 
theoretically support the proposed strategy by providing relevant theorems and proofs. 
 
3.1. k-Step Lookahead Formulation 
 
HMM is traditionally designed to make sequential state estimations based only on past observations and 
the current hidden state. However, in this work, access to future observations can improve the accuracy of 
decoding. To utilize future information, we introduce a k-step lookahead strategy where at each step, future 
� observations are added into the state estimation process. 
 
As mentioned the definition of HMM in Section 2.1, the objective is to maximize the joint probability of 
𝑃ሺ 𝑞௧ ∣∣ 𝑜ଵ, … , 𝑜் ሻ at each time 𝑡.  However, the proposed method instead maximizes the joint probability 
of 𝑃ሺ 𝑞௧, 𝑞௧ାଵ, … , 𝑞௧ା௞ ∣∣ 𝑜ଵ, … , 𝑜் ሻ . This joint probability can be expanded by using Bayes’ rule and 
Markov assumptions : 
 

𝑷ሺ𝒒𝒕, 𝒒𝒕ା𝟏, … , 𝒒𝒕ା𝒌, 𝒐𝒕, 𝒐𝒕ା𝟏, … , 𝒐𝒕ା𝒌ሻ ∝ 𝑷ሺ𝒒𝒕ሻ ෑ 𝜶𝒒𝒕శ𝒊,𝒒𝒕శ𝒊శ𝟏

𝒌

𝒊ୀ𝟎

𝜷𝒒𝒕శ𝒊
ሺ𝒐𝒕ା𝒊ሻ (3)

 
Here, multiple future states and observation symbols are considered during decoding at each time step. 
 
3.2. Beam Search Pruning 
 
The main challenge with k-step lookahead decoding is the exponential growth of the possible state paths. 
The computational complexity of the classical decoding algorithm is quadratic. However, the proposed 
method has 𝑁௞ computation cost, and this causes the model to become unmanageable for practical 
applications. We integrate a Beam Search strategy to address this issue by limiting the number of paths 
explored at each step. It is introduced in two parts as; 
 
Strategy: 
 

 Beam Width M : Keep only M top paths with highest probabilities. 
 Pruning: Discard the outside of the top M paths to reduce the computational complexity. 

 
Processs: 
 Expend the path by considering all possible next states for active paths at  t-1. 
 Calculate the scor for each extended path: 
 

 
 Sort the all scores. 
 Keep only the top M paths for next expansion. 

 
This strategy ensures that the calculation cost remains manageable while maintaning paths with high 
probabilities. The most significant value provided by the new strategy in this process is reducing the 
computational complexity. The exponential computation resulting from the classical k-step lookahead 
implementation is reduced to a manageable 𝑁 ൈ 𝑀௞ିଵ with the new strategy where M is the Beam width. 
It is a small and feasible integer value such that 𝑀 ≪ 𝑁௞. The whole process is illustrated in Algorithm 1. 
 

𝑺𝒄𝒐𝒓𝒆൫𝒑𝒂𝒕𝒉𝒋൯  ൌ ෑ 𝜶𝒒𝒕శ𝒊,𝒒𝒕శ𝒊శ𝟏

𝒌

𝒊ୀ𝟎

𝜷𝒒𝒕శ𝒊
ሺ𝒐𝒕ା𝒊ሻ , ∀ 𝒋 ൌ 𝟏, … , 𝑵  (4)
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Algorithm 1: Beam-Limited k-Step Lookahead HMM Decoding 
Input: 
  Transition matrix 𝐴  

 Emission matrix 𝐵  
 Initial probabilities 𝜋 
 Observation sequence 𝑂  ൌ  ሺ𝑜ଵ, 𝑜ଶ, … , 𝑜்ሻ 
 Lookahead depth 𝑘  
 Beam width 𝑀  

Output: 
 Most likely state sequence 𝑄෠ ൌ ሺ𝑞ଵෞ, 𝑞ଶෞ, … , 𝑞ෞ்ሻ 
Initialization: 
 1. Create initial paths for each state : 

              𝑃ሺ𝑠௜ሻ ൌ 𝜋௜𝑏௜ሺ𝑜௜ሻ 
2. Keep top 𝑀 paths depending on their probabilities. 

Iteration for 𝑡 ൌ 2 𝑡𝑜 𝑇 : 
 1. For each active path at time 𝑡 െ 1 : 

1.a. Expand the path by considering all possible next states. 
1.b. For each expansion, compute the cumulative path score by considering: 

𝑆𝑐𝑜𝑟𝑒ሺ𝑝𝑎𝑡ℎ௜ሻ ൌ Π௝ୀ଴
௞ 𝐴௤೟శೕషభ,௤೟శೕ

ൈ 𝐵௤೟శೕ
൫𝑜௧ା௝൯ 

,where A represents the transition probability 𝑃ሺ𝑞௧ା௝|𝑞௧ା௝ିଵሻ and B represents the 
emission probability 𝑃ሺ𝑜௧ା௝|𝑞௧ା௝ሻ.  Future emissions and transitions up to 𝑘 steps are 
multiplied. 

2. Collect all extended paths. 
3. Sort the paths depending on their score in desending order. 
4. Keep only the top M paths 

Termination: 
 1. At 𝑡 ൌ 𝑇 , select the path with max score 

2. Output the corresponding state sequence 𝑄෠  
 
3.3. Beam Width Selection 
 
Selecting an appropriate beam width � is another important issue to handle for a good balance between 
decoding accuracy and computational efficiency in this work. Based on our experimental observations, a 
proper M value can be considered in the following aspects: 
 

Trade-off Between Accuracy and Efficiency 
 

 Small M values (e.g., M=3) yield faster runtime and less memory usage. However, it may discard 
promissing paths and returns lower decoding accuracy. 

 Large M values (e.g. M=50) preserve more promissing paths and it improves the accuracy. But 
computational cost increases. 

 The results suggest that moderate beam widths (e.g., M=20) typically provide a good trade-off, 
achieving high decoding accuracy with manageable runtime and memory usage. 

 

Application-Specific Adaptation 
 

 In real-time systems where runtime constraints are critical. A smaller beam width may be preferred 
for this kind of system. However, keep in mind, slight sacrifices are accepted for faster decoding. 

 A larger beam width can be used to achieve maximum accuracy in the offline process without 
concern for runtime. 

 

Adaptive Beam Width Adjustment 
 

 Future implementations may benefit from the dynamic adjustment of � during decoding based on 
the following scenarios: 

o For instance, if score differences between paths are large, a smaller beam width might 
suffice. Thus, unnecessary calculations are discarded. 

o If many paths have close scores then expanding the beam width temporarily could prevent 
discarding optimal paths. In this scenario, the computational cost increases but the 
protection of the paths that have the highest probability among the competing paths is 
secured. 
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The precise adjustment of the beam width may vary depending on the available computational resources 
and application requirements. For instance, the following optimal M values are provided as examples based 
on the number of states utilized in two distinct models. It is probable that these values will exhibit variability 
according to the specific task being addressed. 
 
4. IMPLEMENTATION DETAILS  
 
In this section, we describe practical reviews that were included in the implementation of the proposed 
Beam-Limited k-Step Lookahead HMM decoding algorithm. These details are important for establishing 
stability and computational efficiency. 
 
The procedure of the proposed algorithm is shown as a flowchart in Figure 3. Here, the k-step value is 
reduced due to the potential event of a condition such as T−t<k. In other words, the value of k is dynamically 
decreased based on the remaining number of steps. Another adjustment made to enhance stability is the 
utilization of logarithmic probabilities. It will improve numerical stability by using summation instead of 
multiplication. 
 

4.1. Dynamic Adjustment of Lookahead Depth 
 

The classical structure of standard k-step lookahead decoding processes over k future observations at every 
time step. However, towards the end of the given observation sequence, specifically when the remaining 
number of time steps (T-t) is less than the desired lookahead depth (k), the algorithm cannot look ahead by 
the full k steps. To handle this issue and ensure the algorithm always considers only available future 
observations: 
 

 The k-step depth is dynamically adjusted: 
 

𝒌𝒆𝒇𝒇𝒆𝒄𝒕𝒊𝒗𝒆 ൌ 𝐦𝐢𝐧ሺ𝒌, 𝑻 െ 𝒕ሻ (5)
 

at each time step t. This adjustment ensures that as the decoding process approaches the end of the 
observation sequence:  the lookahead depth gracefully decreases, preventing out-of-bounds access and 
maintaining computational accuracy. At the final time step, the decoding process secures only the available 
number of future observations that are added into the calculations of the path score. The stability is 
preserved in this way. 

 At the final time step, the decoding process secures only available number of the future 
observations that are added into the calculations of path score. The consistency is maintained with 
this way.  

 

 
Figure 3. The flowchart of proposed method 
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4.2. Logarithmic Probability Computation 
 
The result of direct multiplication may go underflow due the path score include the product of multiple 
transition and emission probabilities. Even, long sequences or small probabilities are also affect the result 
goes underflow. To address this: 
 

 All probability products are calculated in logarithmic. 
 Then, we sum logarithmic results: 

 
log൫Π௜ሺ𝑝௜ሻ൯   ൌ  Σ௜ሺlogሺ𝑝௜ሻሻ (6)

 
 The cumulative score calculation for a path: 

 

log 𝑆 𝑐𝑜𝑟𝑒ሺ𝑝𝑎𝑡ℎሻ  ൌ Σ௝ୀ଴
௞ ൬log 𝑎௤೟శೕషభ,௤೟శೕ

൅ log 𝑏௤೟శೕ
൫𝑜௧ା௝൯൰ (7)

 
 This process provides numerical stability and improves computational robustness on path scores 

without changing the order of path. 
 
4.3. Pruning Strategy 
 
After computing the score of all extended paths we need to update the pruning strategy depending on k-
step adjustment and logarithmic computation. Thus,  
 

 Path are sorted depending on their logarithmic calculated scores. 
 Only save the top M paths. 
 Any ties are solved arbitrarily or by chosen paths with fewer transitions. It is done depending on 

the application scenario. 
 
This simple but effective pruning strategy makes the decoder remain computationally efficient while 
maintaining high-quality path candidates. 
 
5. EXPERIMENTS 
 
5.1. Experimental Setup 
 
In this section, we evaluate the performance of the proposed decoding algorithm: Beam-Limited k-Step 
Lookahead HMM. We use synthetic datasets and varying algorithmic parameters to design a series of 
controlled experiments. 
 
5.1.1. Data Generation 
 
The synthetic data that is used in this work was created with an original HMM by the following parameters: 
 

 The number of hidden states (N) is 5. 
 The number of emission symbol (M) is 6. 
 Transition matrix A is generated randomly and row-stochastic. Specifically, elements were 

initially sampled from a uniform distribution between 0 and 1, and each row was then normalized 
to sum to 1. 

 Emission matrix B is generated randomly and row-stochastic. Similarly, elements were sampled 
from a uniform distribution between 0 and 1, and each row was then normalized to sum to 1. 

 The initial state distribution π is randomly uniformly distributed over all hidden states. 
 
All observation sequences were generated by simulating A and B matrices according to parameters of 
HMM. 1000 independent observation sequences were generated and the length of each is 100. 
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5.1.2. Algorithm Parameters 
 
The algorithm parameters were varied systematically during evaluation as; 
 

 k depth value: {1,2,3,4} 
 M width: {5,10,20,50} 

 
In testing part, each combination of (k,M) was tested to show the effects of different levels of lookahead 
and pruning depth on the decoding.  
 
5.1.3. Evaliation Metrics 
 
The metrics that are used to estimate the performance of the algorithm are: 
 

 Decoding Accuracy: The quantity of correct decoded hidden states compared to the original 
hidden state sequence. 

 Runtime: The average of time that is required to decode a sequence. 
 Memory Usage: Calculate the memory consumption during decoding to measure using profiling 

tools. 
 
We provide a comprehensive view of the trade-off between accuracy, computational time, and memory 
efficiency with these metrics. 
 
5.1.4. Computational Environment 
 
The following system specifications were used to conduct all experiments: 
  

 Intel Core i7-12700H CPU 
 16 GB RAM 
 Python 3.12, Numpy, SciPy 
 Windows 11 

 
We averaged the timing measurements over 10 independent runs for each experimental configuration to 
decrease variability. 
 
5.2. Computational Environment 
 
As mentioned in the previous section, the generated synthetic dataset was used to compare the performance 
of both the proposed and classical (i.e. Viterbi) decoding algorithms. We performed variety of tuple 
lookahead depth k and beam width M on decoding process to illustrate metric performance over on 
accuracy, runtime, and memory consumption. 
 
5.2.1. Decoding Accuracy 
 
Figure 4 illustrates the correlation between decoding accuracy and beam width (M) for varying lookahead 
depths (k). A stable trend across all tested k values reveals that increasing the beam width leads to a 
corresponding improvement in decoding accuracy. Especially, at limited beam widths, such as M=5, an 
observable drop in accuracy is evident when comparing the performance of full k-step lookahead decoding. 
However, even with quite expanded beam widths (e.g., M=20), we achieved accuracy levels closely 
approximating (within a 2-3% margin) those obtained by full lookahead decoding. Furthermore, the results 
show that greater lookahead depths (k=3,4) consistently yield superior decoding accuracy compared to 
casual lookahead depths (k=1,2). Thus, the advantage of containing future observations is underlined in the 
decoding process. 
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Figure 4. Decoding accuracy vs beam width 

 
The corresponding graph visually represents this analysis by plotting beam width (M) on the x-axis and 
decoding accuracy (in percentage) on the y-axis with distinct lines defining the performance for each k 
value. This visualization effectively demonstrates the trade-off between computational efficiency 
(influenced by beam width) and decoding accuracy for different levels of future consideration. 
 
5.2.2. Runtime Performance 
 
Figure 5 presents the analysis of the average runtime per sequence. Here, again, we examine the relationship 
with varying beam widths (M) and lookahead depths (k). As expect, the data consistently exhibits that 
increasing the beam width leads to a corresponding arise in runtime. In particular, the full k-step lookahead 
decoding where executed without any pruning, shows the highest computational cost. On the contrary, the 
proposed method, Beam-Limited k-Step Lookahead, significantly shorten runtime when compared to the 
exhaustive search approach. This advantage becomes more notable at higher values of k. 
 

 
Figure 5. Runtime vs beam width 
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This valuable reduction in runtime is directly pointed to the effective avoiding of exponential growth in 
computation through the implementation of pruning techniques. The graph visually supports these 
observations, plotting the Beam Width (M) on the x-axis against the Average Runtime (in seconds) on the 
y-axis. Here, we see the efficiency obtained by the proposed method. 
 
5.2.3. Memory Usage 
 
Figure 6 illustrates the memory consumption depending on varying beam widths (M) for different 
lookahead depths (k). A key result is that the Beam-Limited decoding strategy significantly reduces 
memory usage when compared to a full lookahead decoding approach. While an increase in beam width 
(M) does cause higher memory consumption, the process remains well within feasible limits for practical 
values (e.g., M≤20).  
 
This characteristic makes the Beam-Limited approach particularly important. Using a smaller M width for 
applications, such as real-time or embedded systems, which are operated under strict memory constraints 
presents a pretty trade-off due to balancing computational performance with efficient resource utilization. 
 

 
Figure 6. Memory usage vs beam width 

 
The graph presents these relationships, illustrating peak memory usage (in MB) on the y-axis against beam 
width (M) on the x-axis. The separated lines show the memory profiles for each k value. This spots the 
practical benefit of beam pruning in optimizing memory traces without strongly compromising accuracy. 
 
5.2.4. Trade-Off Analysis 
 
Figure 7 effectively summarizes the complex trade-off between decoding accuracy and runtime across 
various beam widths (M). The plot readably reveals a smooth curve to illustrate where the beam width 
increases while decoding accuracy improves although at the cost of increased runtime. An obvious "sweet 
spot" comes out around M=20. This means an optimal balance where the algorithm achieves an exceptional 
level of accuracy without suffering high computational expense.  
 
These findings have significant practical inferences as the beam width value can contribute as a crucial 
mechanism where it can be adapted as a decoder behaviour to specific application constraints. If the priority 
is speed or maximal accuracy then adjusting the beam width can allow for flexible optimization. 
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Figure 7. Accuracy vs runtime trade-off 

 
The graph shows the terms which are runtime on the x-axis and decoding accuracy on the y-axis. Each 
point on the curve represents a different beam width value. This graph provides a clear roadmap for 
researchers to navigate the performance aspect and they can make proper decisions based on their system's 
requirements. 
 
6. DISCUSSION 
 
In this work, we proposed a new decoding strategy that is called Beam-Limited k-Step Lookahead for 
Hidden Markov Models (HMMs). This strategy uses the future information to find the most proper path in 
decoding. The calculation of the future information could increase the complexity, so we aim to balance 
decoding accuracy and decrease computational cost in this work. In this section, we discuss our 
experimental findings, limitations of the strategy, and directions for future work. 
 
6.1. Insights from Experimental Results 
 
We got several important trends to handle from the experiments, such as: 
 

 Improve accuracy with k-step lookahead: As known that the classical decoding algorithm (i.e. 
lookahead value k=1) of HMM has no attribute to consider the future information in decoding 
processs, so we consider the beyond the k=1 step to anticipate future observations and incrasing 
more informed decisions. 

 Control parameter - Beam Width (M): This parameter plays a key role in the trade-off between 
accuracy and computational complexity. For instance, if faster decoding is required a small M 
value is enough, but, on the other hand, the result may be in suboptimal paths. If accuracy is 
important, then a larger beam width should be used; however, increased runtime must be accepted.  

 Classical Viterbi vs k-Step: The proposed method with modest value k-Step and moderate beam 
width substantially outperforms classical Viterbi decoding (i.e. k=1) in terms of accuracy and 
validating the value of future observations. 

 Memory efficiency: The proposed decoding algorithm has slightly increased memory usage 
according to standard decoding algorithm. However, the Beam-Limited approach remains 
practical and scalable for reasonable beam width values (i.e. 𝑀 ൑ 20). 

 
6.2. Limitations 
 
The proposed method has an exponential complexity of k-step lookahead decoding. But it still takes over 
the limitations such as: 



 Mehmet KURUCAN 

 Ç.Ü. Müh. Fak. Dergisi, 40(3), Eylül 2025 - 557 - 

 Beam width parameter: The value of beam width M is key parameter. Very small M may cause 
early pruning of optimal paths and this causes weak accuracy. 

 Dynamic environments: The benefit of lookahead may be decreased while the environment is 
highly dynamic or non-stationary where the unpredictability of future information.  

 Scalability: While the beam pruning effectively reduces the exponential computational cost of full 
k-step lookahead, the scalability of the proposed method may still present significant 
computational and memory challenges for extremely large-scale HMMs. In such scenarios, even 
with beam-limiting, the number of paths to manage and the computations per step can become 
restrictive. Addressing these limitations for ultra-large HMMs might require a combination of 
advanced optimization strategies beyond the current scope. These could include: 

o Distributed Computing: Using distributed systems to parallelize the path expansion and 
scoring across multiple processing units or nodes [16]. 

o Hierarchical HMMs (HHMMs): For very complex systems, adopting hierarchical HMM 
structures could reduce the effective state space at each level, thereby simplifying the 
decoding problem. 

o Approximation Techniques: Exploring more aggressive approximation or early exit 
strategies within the beam search when confidence in a path becomes exceptionally high. 

o State Aggregation/Reduction: Pre-processing techniques to reduce the number of 
effective hidden states if the application allows for some loss of granularity. 

 
While these approaches are beyond the focus of the current work, these strategies can represent crucial 
directions for extending the applicability of beam-limited lookahead decoding to highly complex real-world 
systems. 
 
6.3. Future Work 
 
Future research can be emerged from this work. There are several directions such as: 
 

 Adaptive beam width: The beam width value M can be adjusted during decoding based on the 
confidence score.  

 Parallelization: GPU based expansion could dramatically increase the fast of decoding.  
 Robustness in noise: Research the robustness of the proposed decoding stragey under the noisy 

observations could be the next step of this work. 
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