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Hidden Markov Models (HMMs) are widely used in many
sequential decision-making problems due to their ability to
model time-related dependencies. The standard decoding
methods in these models, such as the Viterbi algorithm, are
limited by their dependence on past observations only. Thus,
this leads to unpredictability when future information is
available. In this work, we propose a decoding strategy called
Beam-Limited k-Step Lookahead that looks k-step ahead,
drawing parallels to k-step discrete control synthesis, to make
use of future information. The proposed method achieves a
balance between decoding accuracy and computational
complexity by constraining the search space to the top M most
promising paths. Experimental results on synthetic HMM data
show that our new decoding strategy significantly improves
decoding accuracy over classical Viterbi decoding. The findings
highlight the potential of this new strategy to improve the
performance of sequential decoding systems.
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Gizli Markov Modelleri (HMM 'ler), zamanla ilgili bagimliliklart
modelleme yetenekleri nedeniyle birgok ardigik karar verme
probleminde yaygin olarak kullanilir. Bu modellerdeki standart
kod ¢6zme yontemleri, Viterbi algoritmasi gibi, yalnizca ge¢gmis
gozlemlere olan bagimhiliklartyla smirhidir. Bu nedenle,
gelecekteki bilgiler mevecut oldugunda Ongoriilemezlige yol
acar. Bu ¢alismada, gelecekteki bilgileri kullanmak i¢in (yani
kontrol teorisindeki k-adiml1 ayrik kontrol sentezine benzer bir
yaklagimla) k-adim ileriyi géren Isin Simirli k-Adim ileriye
Bakis ad1 verilen bir kod ¢dzme stratejisi dneriyoruz. Onerilen
yontem, arama alanini en umut verici M yolla smirlayarak kod
¢ozme dogrulugu ve hesaplama karmasiklig1 arasinda bir denge
saglar. Sentetik HMM verileri iizerindeki deneysel sonuglar,
yeni kod ¢6zme stratejimizin kod ¢ézme dogrulugunu klasik
Viterbi kod ¢6zmeye kiyasla onemli o6lgiide iyilestirdigini
gostermektedir. Bulgular, bu yeni stratejinin ardisik kod ¢6zme
sistemlerinin ~ performansini iyilestirme  potansiyelini
vurgulamaktadir.
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1. INTRODUCTION

The utilization of machine learning-based models in scientific research has become firmly settled. Up-to-
date works are now directed towards enhancing the effectiveness and efficiency of existing Machine
Learning (ML) models through the combination of different models or tools. As is well-known, the Hidden
Markov Model (HMM) is considered a powerful ML tool employed for modeling sequential data in several
fields such as speech recognition[ 1], bioinformatics[2], and handwriting recognition[3].

Three distinct algorithms are employed for three fundamental problems in HMM. The decoding problem,
which is the central focus of this study, is typically solved by the Viterbi algorithm. The algorithm gives
the most probable sequence of underlying hidden states as its output given a sequence of observations [4].
However, the standard Viterbi algorithm, exclusively uses the past observations. Due to its inherent
structure rooted in the Markov assumption, it potentially ignores the future observations. This causal
dependency means that Viterbi cannot leverage potentially rich information contained in subsequent
observations by its design. This aspect leads to suboptimal state estimations in scenarios where future
context is available and relevant. This limitation naturally leads us to the following question: In the context
of the decoding problem, could knowledge of observations a few steps into the future help us to determine
more optimal and probable sequence of hidden states?

To find a proper answer to this question, we introduce a k-step lookahead decoding strategy that
incorporates future knowledges when performing state estimations with the decoder algorithm. We
suppsose that utilizing information from the future in this manner will yield a more accurate estimation of
the most likely hidden state sequence. However, a significant challenge arises in the computations: the
computational complexity of the k-step lookahead calculation increases exponentially with the depth of k.
Adapting a model that performs such expensive calculations to real-world applications will be difficult.

Effectively overcoming the computational complexity induced by the depth of the k value requires strategic
method. Thus, we integrate the beam search pruning technique into the lookahead process. This method
allows us to keep only the M most promising paths at each step, thereby aligning with the fundamental
objective of decoding, which is to retain the path with the highest probability among the current
possibilities. The proposed method offers a scalable framework that adeptly balances accuracy and
computational efficiency.

Our work is determined by combining k-step lookahead with beam pruning in a lightweight and efficient
manner. It is specifically applied for HMM decoding without the need for retraining or model restructuring.

1.1. Related Work

There are several works that have been proposed to improve decoding performance in Hidden Markov
Models. The Viterbi algorithm [5] is the classical approach, finding the most likely sequence of hidden
states based on given observations. However, this method does not exploit the information of future
observations.

Lookahead decoding techniques have been investigated to address the use of future information. For
instance, k-step lookahead strategies, as studied in [6] where the proposed decoder method uses future
observations to improve prediction accuracy. The difference between this work and ours is positioning
based on the lookahead module. Their approach depends on depth-first search and our study's lookahead is
based on k-step discrete controller synthesis. We perform the decoding operation with a discrete controller
for the decoding problem.

Beam search is a heuristic method widely used in natural language processing. [7] provides a practical
solution by limiting the number of paths considered during decoding. Some works have applied beam
search to sequence models [8,9]. However, in their works, integration with k-step lookahead has been
limited.

Other approaches, such as particle filtering [10] and deep learning-based sequence models [11], have been
studied for sequential decoding. Yet, these methods require large-scale computational resources.
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1.2. Related Work

The remainder of this paper is organised as follows: Section 2 formally defines the problem, Section 3
describes the proposed method, Section 4 presents experimental evaluations, Section 5 discusses the results,
and Sections 6 conclude with insights and future directions.

2. PROBLEM DEFINITION

An HMM is a well-known ML tool that provides a probabilistic framework for modelling sequential data,
where transitions of the system between hidden states while emitting observable outputs [12]. The goal of
HMM-based decoding is to determine the most probable sequence of hidden states that could have
generated a given sequence of observations [5]. This is called Decoding Problem which is one of the
classical problems of HMM. This is commonly solved using the Viterbi algorithm, which applies dynamic
programming to identify the proper state path. However, the structure of the standard Viterbi is inherently
causal [2]. It means that it only depends on the previous condition. Thus, its predictive capability is limited
when future information is known and available. Yet, directly apply lookahead idea into into the decoding
process increases computational complexity dramatically. In this point, we need an efficient decoding
strategy to utilize the future observations without suffering from exponential cost. Thus, we propose a novel
decoding approach to addresses this problem.

2.1. Definition of Hidden Markov Model
Hidden Markov Model (HMM) is defined by the following components [13]:

® A finite set of hidden states : § = {s;, 55, ..., Sy},
A finite set of observations: 0 = {04, 05, ..., 0y},

® A transition probability matrix: A = [al-]-], where a;; = P(qu =s; | q. = si)
® An emission probability matrix: B = [,Bj (k)],wherbj (k)=P(o, =0, | q: = Y )e,

® An initial state distribution: m = [q;], where q; = P(qo = s;)-

The goal is to decode the most probable hidden state sequence Q = (qq, ¢, ..., qr) depending on given
obervation sequence 0 = (04, 0y, ..., 07).

t=1 t=2 t=3 t="T

01 02 03 or

Figure 1. HMM structure showing transitions between hidden states q; and corresponding emissions O
2.2. Standard Viterbi Algorithm

The standard decoding algorithm, Viterbi, is a dynamic programming approach to find the most probable
hidden state sequence depending on given observation sequence. The formal computation is [14];

Q= argmax P(Q|0) ¢))

It defines;

8,(J) = max P(qq,..,q¢-1,9: = S, 01, ..., 0p) 2)
q1q1-1
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The steps of this algorithm are;

e Initial step: 61 (j) = m;b;(0,)

e Recursion step: 6;(j) = miax[(‘it_l(i)aij]bj (0p)

The optimal path is reconstructed using backtracking when t=T.

t=20 t=1 t=2

01 02 or

Figure 2. Viterbi decoding as dynamic programming over possible state paths that are illustrated with red
arrows

2.3. Limitations and Definitions of the Proposed Model

The standart decoding algorithm oh HMM is optimal under the assumption that only past informations (i.e.
observations) are known [15]. Thus, it does not exploit the future observations during the process. On the
other hand, while our proposed model facilitates the consider of future steps into the calculation, thus
offering a novel strategy for decoding, extending the lookahead by k steps leads to an exponential increase
in computational complexity.

The problem statement:
e Given:
o AHMM (4,B,n)
o An observation sequence O = (04, ..., 0r)
o A desired lookahead depth k
o A beam width constraint M
e Design a decoding

o Use k -step lookahead to consider future observations
o Avaoids exponential computation

o  Use near-optimal M value within practical runtime

This work proposes a novel decoding approach that directly addresses this problem via a beam-limited
lookahead mechanism. The core challenge we tackle is utilizing k-step future observations efficiently while
bounding computational complexity through beam pruning. The k-step lookahead strategy employed in this
work can be designed as a form of k-step discrete control synthesis. This approach arises from the decision-
making process at each time step. The system synthesizes a sequence of future hidden states where
maximizes the overall likelihood of the given future observations. This process analogous to a controller
optimizing future actions based on predicted states. Unlike traditional depth-first search (e.g. as [6])
methods that might explore all branches exhaustively, our approach implicitly guides this "synthesis"
through probabilistic maximization. With this way, the proposed method prepares the beam pruning to
efficiently manage the search space.
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3. METHOD

In this section, we detail our proposed model, including definitions of the tools employed and their
operational principles. As illustrated by the model's name, we will begin by defining the k-step lookahead.
Next, we will discuss the application of beam search pruning to reduce the computational cost associated
with the k-step. To clarify the operational principle, we will present a pseudocode representation and
theoretically support the proposed strategy by providing relevant theorems and proofs.

3.1. k-Step Lookahead Formulation

HMM is traditionally designed to make sequential state estimations based only on past observations and
the current hidden state. However, in this work, access to future observations can improve the accuracy of
decoding. To utilize future information, we introduce a k-step lookahead strategy where at each step, future
[J observations are added into the state estimation process.

As mentioned the definition of HMM in Section 2.1, the objective is to maximize the joint probability of
P(q; | 04, ...,07) at each time t. However, the proposed method instead maximizes the joint probability

of P(qt qes1s ++» Qesk | 01, .., 07 ) . This joint probability can be expanded by using Bayes’ rule and
Markov assumptions :

k
P(q:, qes1s - Qesto O Ot -+ Opak) X P(qy) 1_[ A, ilerii Bqt+i(0t+i) 3)
i=0

Here, multiple future states and observation symbols are considered during decoding at each time step.

3.2. Beam Search Pruning

The main challenge with k-step lookahead decoding is the exponential growth of the possible state paths.
The computational complexity of the classical decoding algorithm is quadratic. However, the proposed
method has N¥ computation cost, and this causes the model to become unmanageable for practical
applications. We integrate a Beam Search strategy to address this issue by limiting the number of paths
explored at each step. It is introduced in two parts as;

Strategy:

e Beam Width M : Keep only M top paths with highest probabilities.
e Pruning: Discard the outside of the top M paths to reduce the computational complexity.

Processs:
e Expend the path by considering all possible next states for active paths at t-1.
e Calculate the scor for each extended path:

k

Score(path,-) = 1_[ aiIt+iJIt+i+1 BQHi(OH‘i) ! Vj =1..,N (4)
i=0

e Sort the all scores.
e Keep only the top M paths for next expansion.

This strategy ensures that the calculation cost remains manageable while maintaning paths with high
probabilities. The most significant value provided by the new strategy in this process is reducing the
computational complexity. The exponential computation resulting from the classical k-step lookahead
implementation is reduced to a manageable N X M~ with the new strategy where M is the Beam width.
It is a small and feasible integer value such that M < N*. The whole process is illustrated in Algorithm 1.
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Algorithm 1: Beam-Limited k-Step Lookahead HMM Decoding

Input:

e  Transition matrix A

e  Emission matrix B

e Initial probabilities

e  Observation sequence O = (04, 0y, ..., 07)

e  Lookahead depth k

e Beam width M
Output:

Most likely state sequence § = (43, @5, ..., 1)

Initialization:

1.  Create initial paths for each state :
P(s;) = m;b;(0;)
2. Keep top M paths depending on their probabilities.
Iteration fort = 2toT:
1. Foreach active path at time t — 1 :
1.a. Expand the path by considering all possible next states.
1.b. For each expansion, compute the cumulative path score by considering:
Score(path;) = H]I'(=0AQt+j—1'Qt+j X Blh+j (0t+j)
,where A represents the transition probability P(q;4;|q¢+j-1) and B represents the
emission probability P(0;4;|q¢+;). Future emissions and transitions up to k steps are
multiplied.
2. Collect all extended paths.
Sort the paths depending on their score in desending order.
4. Keep only the top M paths

w

Termination:

1. Att =T, select the path with max score
Output the corresponding state sequence Q

3.3. Beam Width Selection

Selecting an appropriate beam width [] is another important issue to handle for a good balance between
decoding accuracy and computational efficiency in this work. Based on our experimental observations, a
proper M value can be considered in the following aspects:

Trade-off Between Accuracy and Efficiency

e  Small M values (e.g., M=3) yield faster runtime and less memory usage. However, it may discard
promissing paths and returns lower decoding accuracy.

e Large M values (e.g. M=50) preserve more promissing paths and it improves the accuracy. But
computational cost increases.

e The results suggest that moderate beam widths (e.g., M=20) typically provide a good trade-off,
achieving high decoding accuracy with manageable runtime and memory usage.

Application-Specific Adaptation

e Inreal-time systems where runtime constraints are critical. A smaller beam width may be preferred
for this kind of system. However, keep in mind, slight sacrifices are accepted for faster decoding.

e A larger beam width can be used to achieve maximum accuracy in the offline process without
concern for runtime.

Adaptive Beam Width Adjustment

e  Future implementations may benefit from the dynamic adjustment of [ during decoding based on
the following scenarios:

o For instance, if score differences between paths are large, a smaller beam width might
suffice. Thus, unnecessary calculations are discarded.

o Ifmany paths have close scores then expanding the beam width temporarily could prevent
discarding optimal paths. In this scenario, the computational cost increases but the
protection of the paths that have the highest probability among the competing paths is
secured.
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The precise adjustment of the beam width may vary depending on the available computational resources
and application requirements. For instance, the following optimal M values are provided as examples based
on the number of states utilized in two distinct models. It is probable that these values will exhibit variability
according to the specific task being addressed.

4. IMPLEMENTATION DETAILS

In this section, we describe practical reviews that were included in the implementation of the proposed
Beam-Limited k-Step Lookahead HMM decoding algorithm. These details are important for establishing
stability and computational efficiency.

The procedure of the proposed algorithm is shown as a flowchart in Figure 3. Here, the k-step value is
reduced due to the potential event of a condition such as T—t<k. In other words, the value of k is dynamically
decreased based on the remaining number of steps. Another adjustment made to enhance stability is the
utilization of logarithmic probabilities. It will improve numerical stability by using summation instead of
multiplication.

4.1. Dynamic Adjustment of Lookahead Depth

The classical structure of standard k-step lookahead decoding processes over k future observations at every
time step. However, towards the end of the given observation sequence, specifically when the remaining
number of time steps (T-t) is less than the desired lookahead depth (k), the algorithm cannot look ahead by
the full k steps. To handle this issue and ensure the algorithm always considers only available future
observations:

e The k-step depth is dynamically adjusted:
keffective = min(k' T- t) (5)

at each time step t. This adjustment ensures that as the decoding process approaches the end of the
observation sequence: the lookahead depth gracefully decreases, preventing out-of-bounds access and
maintaining computational accuracy. At the final time step, the decoding process secures only the available
number of future observations that are added into the calculations of the path score. The stability is
preserved in this way.
e At the final time step, the decoding process secures only available number of the future
observations that are added into the calculations of path score. The consistency is maintained with
this way.

[Start: Initialize paths with m; x b;(o; )]

Expand each path to
all possible next states
Compute cumulative k-step
scores (using log probabilities)

Sort all extended
paths by their scores

Retain top M paths
(Beam Pruning)

]

’ Optional: Normalize path scores |

Increment t Adjust kif 7' —t < k

| Select best path |

Output best state sequence

Figure 3. The flowchart of proposed method
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4.2. Logarithmic Probability Computation

The result of direct multiplication may go underflow due the path score include the product of multiple
transition and emission probabilities. Even, long sequences or small probabilities are also affect the result
goes underflow. To address this:

e All probability products are calculated in logarithmic.
e Then, we sum logarithmic results:

log(M;(p)) = Z;(log(py) (6)
e  The cumulative score calculation for a path:

log S core(path) = ZJ’;O (log Aqyyjo1.aee; T 108D, ; (ot+j)) 7

e This process provides numerical stability and improves computational robustness on path scores
without changing the order of path.

4.3. Pruning Strategy

After computing the score of all extended paths we need to update the pruning strategy depending on k-
step adjustment and logarithmic computation. Thus,

e Path are sorted depending on their logarithmic calculated scores.

e  Only save the top M paths.

e Any ties are solved arbitrarily or by chosen paths with fewer transitions. It is done depending on
the application scenario.

This simple but effective pruning strategy makes the decoder remain computationally efficient while
maintaining high-quality path candidates.

5. EXPERIMENTS

5.1. Experimental Setup

In this section, we evaluate the performance of the proposed decoding algorithm: Beam-Limited k-Step
Lookahead HMM. We use synthetic datasets and varying algorithmic parameters to design a series of
controlled experiments.

5.1.1. Data Generation
The synthetic data that is used in this work was created with an original HMM by the following parameters:

e  The number of hidden states (N) is 5.

e  The number of emission symbol (M) is 6.

e Transition matrix A is generated randomly and row-stochastic. Specifically, elements were
initially sampled from a uniform distribution between 0 and 1, and each row was then normalized
to sumto 1.

e Emission matrix B is generated randomly and row-stochastic. Similarly, elements were sampled
from a uniform distribution between 0 and 1, and each row was then normalized to sum to 1.

e The initial state distribution & is randomly uniformly distributed over all hidden states.

All observation sequences were generated by simulating A and B matrices according to parameters of
HMM. 1000 independent observation sequences were generated and the length of each is 100.
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5.1.2. Algorithm Parameters
The algorithm parameters were varied systematically during evaluation as;

e kdepth value: {1,2,3,4}
e M width: {5,10,20,50}

In testing part, each combination of (k,M) was tested to show the effects of different levels of lookahead
and pruning depth on the decoding.

5.1.3. Evaliation Metrics
The metrics that are used to estimate the performance of the algorithm are:

e Decoding Accuracy: The quantity of correct decoded hidden states compared to the original
hidden state sequence.

¢ Runtime: The average of time that is required to decode a sequence.

e Memory Usage: Calculate the memory consumption during decoding to measure using profiling
tools.

We provide a comprehensive view of the trade-off between accuracy, computational time, and memory
efficiency with these metrics.

5.1.4. Computational Environment

The following system specifications were used to conduct all experiments:

Intel Core 17-12700H CPU
16 GB RAM

Python 3.12, Numpy, SciPy
Windows 11

We averaged the timing measurements over 10 independent runs for each experimental configuration to
decrease variability.

5.2. Computational Environment

As mentioned in the previous section, the generated synthetic dataset was used to compare the performance
of both the proposed and classical (i.e. Viterbi) decoding algorithms. We performed variety of tuple
lookahead depth k and beam width M on decoding process to illustrate metric performance over on
accuracy, runtime, and memory consumption.

5.2.1. Decoding Accuracy

Figure 4 illustrates the correlation between decoding accuracy and beam width (M) for varying lookahead
depths (k). A stable trend across all tested k values reveals that increasing the beam width leads to a
corresponding improvement in decoding accuracy. Especially, at limited beam widths, such as M=5, an
observable drop in accuracy is evident when comparing the performance of full k-step lookahead decoding.
However, even with quite expanded beam widths (e.g., M=20), we achieved accuracy levels closely
approximating (within a 2-3% margin) those obtained by full lookahead decoding. Furthermore, the results
show that greater lookahead depths (k=3,4) consistently yield superior decoding accuracy compared to
casual lookahead depths (k=1,2). Thus, the advantage of containing future observations is underlined in the
decoding process.
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Decoding Accuracy vs Beam Width
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Figure 4. Decoding accuracy vs beam width

The corresponding graph visually represents this analysis by plotting beam width (M) on the x-axis and
decoding accuracy (in percentage) on the y-axis with distinct lines defining the performance for each k
value. This visualization effectively demonstrates the trade-off between computational efficiency
(influenced by beam width) and decoding accuracy for different levels of future consideration.

5.2.2. Runtime Performance

Figure 5 presents the analysis of the average runtime per sequence. Here, again, we examine the relationship
with varying beam widths (M) and lookahead depths (k). As expect, the data consistently exhibits that
increasing the beam width leads to a corresponding arise in runtime. In particular, the full k-step lookahead
decoding where executed without any pruning, shows the highest computational cost. On the contrary, the
proposed method, Beam-Limited k-Step Lookahead, significantly shorten runtime when compared to the
exhaustive search approach. This advantage becomes more notable at higher values of k.

Runtime vs Beam Width

xrT XXX

S W N =

Ry

Runtime (seconds)

10 20 30 40 50
Beam Width (M)

Figure 5. Runtime vs beam width
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This valuable reduction in runtime is directly pointed to the effective avoiding of exponential growth in
computation through the implementation of pruning techniques. The graph visually supports these
observations, plotting the Beam Width (M) on the x-axis against the Average Runtime (in seconds) on the
y-axis. Here, we see the efficiency obtained by the proposed method.

5.2.3. Memory Usage

Figure 6 illustrates the memory consumption depending on varying beam widths (M) for different
lookahead depths (k). A key result is that the Beam-Limited decoding strategy significantly reduces
memory usage when compared to a full lookahead decoding approach. While an increase in beam width
(M) does cause higher memory consumption, the process remains well within feasible limits for practical
values (e.g., M<20).

This characteristic makes the Beam-Limited approach particularly important. Using a smaller M width for

applications, such as real-time or embedded systems, which are operated under strict memory constraints
presents a pretty trade-off due to balancing computational performance with efficient resource utilization.

Memory Usage vs Beam Width

200 A

180 A

160 A

140 4

120 4

Peak Memory Usage (MB)

100 A

80 A

60 -

10 20 30 40 50
Beam Width (M)

Figure 6. Memory usage vs beam width

The graph presents these relationships, illustrating peak memory usage (in MB) on the y-axis against beam
width (M) on the x-axis. The separated lines show the memory profiles for each k value. This spots the
practical benefit of beam pruning in optimizing memory traces without strongly compromising accuracy.

5.2.4. Trade-Off Analysis

Figure 7 effectively summarizes the complex trade-off between decoding accuracy and runtime across
various beam widths (M). The plot readably reveals a smooth curve to illustrate where the beam width
increases while decoding accuracy improves although at the cost of increased runtime. An obvious "sweet
spot" comes out around M=20. This means an optimal balance where the algorithm achieves an exceptional
level of accuracy without suffering high computational expense.

These findings have significant practical inferences as the beam width value can contribute as a crucial

mechanism where it can be adapted as a decoder behaviour to specific application constraints. If the priority
is speed or maximal accuracy then adjusting the beam width can allow for flexible optimization.
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Accuracy vs Runtime Trade-Off
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Figure 7. Accuracy vs runtime trade-off

The graph shows the terms which are runtime on the x-axis and decoding accuracy on the y-axis. Each
point on the curve represents a different beam width value. This graph provides a clear roadmap for
researchers to navigate the performance aspect and they can make proper decisions based on their system's
requirements.

6. DISCUSSION

In this work, we proposed a new decoding strategy that is called Beam-Limited k-Step Lookahead for
Hidden Markov Models (HMMs). This strategy uses the future information to find the most proper path in
decoding. The calculation of the future information could increase the complexity, so we aim to balance
decoding accuracy and decrease computational cost in this work. In this section, we discuss our
experimental findings, limitations of the strategy, and directions for future work.

6.1. Insights from Experimental Results
We got several important trends to handle from the experiments, such as:

e Improve accuracy with k-step lookahead: As known that the classical decoding algorithm (i.e.
lookahead value k=1) of HMM has no attribute to consider the future information in decoding
processs, so we consider the beyond the k=1 step to anticipate future observations and incrasing
more informed decisions.

e Control parameter - Beam Width (M): This parameter plays a key role in the trade-off between
accuracy and computational complexity. For instance, if faster decoding is required a small M
value is enough, but, on the other hand, the result may be in suboptimal paths. If accuracy is
important, then a larger beam width should be used; however, increased runtime must be accepted.

e Classical Viterbi vs k-Step: The proposed method with modest value k-Step and moderate beam
width substantially outperforms classical Viterbi decoding (i.e. k=1) in terms of accuracy and
validating the value of future observations.

e Memory efficiency: The proposed decoding algorithm has slightly increased memory usage
according to standard decoding algorithm. However, the Beam-Limited approach remains
practical and scalable for reasonable beam width values (i.e. M < 20).

6.2. Limitations

The proposed method has an exponential complexity of k-step lookahead decoding. But it still takes over
the limitations such as:
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e Beam width parameter: The value of beam width M is key parameter. Very small M may cause
early pruning of optimal paths and this causes weak accuracy.

e Dynamic environments: The benefit of lookahead may be decreased while the environment is
highly dynamic or non-stationary where the unpredictability of future information.

e  Scalability: While the beam pruning effectively reduces the exponential computational cost of full
k-step lookahead, the scalability of the proposed method may still present significant
computational and memory challenges for extremely large-scale HMMs. In such scenarios, even
with beam-limiting, the number of paths to manage and the computations per step can become
restrictive. Addressing these limitations for ultra-large HMMs might require a combination of
advanced optimization strategies beyond the current scope. These could include:

o Distributed Computing: Using distributed systems to parallelize the path expansion and
scoring across multiple processing units or nodes [16].

o Hierarchical HMMs (HHMMs): For very complex systems, adopting hierarchical HMM
structures could reduce the effective state space at each level, thereby simplifying the
decoding problem.

o Approximation Techniques: Exploring more aggressive approximation or early exit
strategies within the beam search when confidence in a path becomes exceptionally high.

o State Aggregation/Reduction: Pre-processing techniques to reduce the number of
effective hidden states if the application allows for some loss of granularity.

While these approaches are beyond the focus of the current work, these strategies can represent crucial
directions for extending the applicability of beam-limited lookahead decoding to highly complex real-world
systems.

6.3. Future Work
Future research can be emerged from this work. There are several directions such as:

e Adaptive beam width: The beam width value M can be adjusted during decoding based on the
confidence score.

e Parallelization: GPU based expansion could dramatically increase the fast of decoding.

¢ Robustness in noise: Research the robustness of the proposed decoding stragey under the noisy
observations could be the next step of this work.
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