
 

Ç.Ü. Müh. Fak. Dergisi, 40(3), Eylül 2025 - 531 - 

Diagnosis of Hepatocellular Carcinoma - HCC Liver Cancer Using 
Federated Learning on MR Images 

 
Burak UZDUR 1,a, Erkut TEKELİ 1,b, Turgay İBRİKÇİ 1,c, Harun Ur RASHID 2,d,      

Geetha RAMACHANDRAN 3,e 
 

1Adana Alparslan Turkes Science and Technology University, Software Engineering Department, Adana, 
Türkiye 
2Hankuk University of Foreign Studies, Department of Information and Communications Engineering, Seoul, 
South Korea 
3S.A. Engineering College, Department of Computer Science and Engineering, Thiruverkadu, Chennai, India 
 
aORCID: 0009-0008-8093-1097; bORCID: 0000-0001-9468-5378; cORCID: 0000-0003-1321-2523; 
dORCID: 0000-0003-0874-7590; eORCID: 0000-0002-4541-3314 
 

Article Info  ABSTRACT 
Received : 05.07.2025  
Accepted : 12.08.2025 
DOI: 10.21605/cukurovaumfd.1735231 

In recent years, Federated Learning (FL) has emerged as a 
powerful paradigm for training machine learning models across 
decentralized data sources while preserving data privacy. This 
study proposes an FL framework for the classification of liver 
tumors from the ATLAS dataset, which provides images of 
hepatocellular carcinoma cases. A comparative evaluation was 
performed utilizing CNN, EfficientNet, MobileNetV3, 
ResNet50, and VGG16 architectures within the federated 
environment. Among these models, the FL implementation 
based on EfficientNet achieved superior performance, reaching 
an accuracy of 93.75% and a ROC-AUC score of 99.19%. The 
results demonstrate that federated approaches can attain 
performance levels comparable to centralized learning while 
ensuring patient data confidentiality. The potential of developing 
a privacy-preserving collaborative model using the FL method 
has been demonstrated. 
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MR Görüntülerinde Federasyonlu Öğrenme Kullanılarak Hepatosit Karsinomu - HCC 
Karaciğer Kanseri Tanısı 
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Son yıllarda, Federasyonlu Öğrenme (FÖ), veri gizliliğini 
korurken merkezi olmayan veri kaynakları arasında makine 
öğrenimi modellerini eğitmek için güçlü bir paradigma olarak 
ortaya çıkmıştır. Bu çalışma, hepatosellüler karsinom 
vakalarının görüntülerini sağlayan ATLAS veri setinden elde 
edilen Manyetik Rezonans Görüntülerini kullanılarak karaciğer 
tümörlerinin sınıflandırılması için bir FÖ çerçevesi 
önermektedir. Federasyonlu ortamda Evrişimli Sinir Ağı, 
EfficientNet, MobileNetV3, ResNet50 ve VGG16 mimarileri 
kullanılarak karşılaştırmalı bir değerlendirme yapılmıştır. Bu 
modeller arasında, EfficientNet tabanlı FÖ uygulaması, 
%93,75'lik bir doğruluk ve %99,19'luk bir ROC-AUC puanına 
ulaşarak üstün bir performans elde etmiştir. Sonuçlar, 
federasyonlu yaklaşımların hasta verilerinin gizliliğini sağlarken 
merkezi öğrenmeye benzer performans seviyelerine 
ulaşabileceğini göstermektedir. FÖ ile gizliliği koruyan işbirlikçi 
model geliştirme potansiyeli olduğu gösterilmiştir. 

Sorumlu Yazar  
Erkut TEKELİ 
etekeli@atu.edu.tr 

 

Anahtar Kelimeler   
Federasyonlu öğrenme  
FedAvg  
Karaciğer tümörü sınıflandırması 
Evrişimsel sinir ağları 

 

Atıf şekli: UZDUR, B., TEKELİ, E., 
İBRİKÇİ, T., RASHID, H.U., GEETHA, 
R. (2025). MR Görüntülerinde 
Federasyonlu Öğrenme Kullanılarak 
Hepatosit Karsinomu - HCC Karaciğer 
Kanseri Tanısı. Çukurova Üniversitesi, 
Mühendislik Fakültesi Dergisi, 40(3), 
531-544. 

 



 Diagnosis of Hepatocellular Carcinoma - HCC Liver Cancer Using Federated Learning on MR Images 

- 532 -  Ç.Ü. Müh. Fak. Dergisi, 40(3), Eylül 2025 

1. INTRODUCTION 
 
The liver, as the largest internal organ in the human body, plays a vital role in numerous physiological 
functions, including detoxification, enzyme production, blood clotting, and metabolic regulation [1]. Given 
its critical importance, timely and accurate diagnosis of liver-related disorders is crucial for effective 
treatment and improved patient outcomes. 
 
Magnetic Resonance Imaging (MRI) has become a cornerstone in liver disease diagnostics due to its non-
invasive nature and its ability to generate high-resolution anatomical and functional images. The evolution 
of MRI techniques has significantly improved the early detection and characterization of hepatic 
abnormalities [2]. Alongside these advancements, Deep Learning (DL) techniques have increasingly gained 
attention for their ability to analyze complex medical imaging data with high precision. 
 
DL, a subset of Machine Learning (ML), has shown transformative potential in healthcare, especially in 
radiology [3]. It allows for automated detection, classification, and segmentation of medical images while 
minimizing diagnostic variability and aiding clinicians in decision-making processes [4]. These advances 
are particularly important in diagnosing critical diseases like Hepatocellular Carcinoma (HCC). 
 
HCC remains one of the most prevalent and fatal forms of liver cancer, with projections estimating over 
one million cases globally by 2025 [5]. It is commonly observed in regions with high hepatitis B and C 
virus prevalence, such as sub-Saharan Africa and Eastern Asia. Although dynamic Computed Tomography 
(CT) is a standard imaging technique for HCC diagnosis [6,7], its interpretation requires expert knowledge 
and is both time- and labor-intensive [8]. Recent research has demonstrated that automated methods, such 
as computer vision, can enhance diagnostic efficiency and reduce human error [9,10]. 
 
Pre-trained Convolutional Neural Networks (CNN), including MobileNetV3, EfficientNet, ResNet50, and 
VGG16, have proven effective in medical image classification tasks. However, their performance is highly 
dependent on large and diverse training datasets. In medical domains, data acquisition and sharing are 
constrained by strict privacy laws and ethical considerations. 
 
As data privacy and security remain top concerns, Federated Learning (FL) has emerged as a viable 
alternative to centralized training approaches. FL allows multiple institutions to collaboratively train ML 
models locally, without sharing sensitive data. Only model parameters are exchanged and aggregated, 
preserving patient confidentiality while enabling large-scale collaborative research. 
 
In this study, an FL-based classification framework is applied by using EfficientNetB5 for liver tumor 
identification in MRI images. To assess its effectiveness, we compared the FL model’s performance with 
centralized implementations of widely used DL architectures, including CNN, EfficientNet, MobileNetV3, 
ResNet50, and VGG16. This comparison aims to evaluate FL's advantages not only in classification 
accuracy but also in addressing data privacy concerns. 
 
The limitations of centralized data usage in medical imaging—particularly regarding privacy, ethics, and 
regulatory compliance—have led to increased interest in decentralized learning frameworks. FL provides 
a robust solution by enabling collaborative model training across institutions without transferring raw 
patient data. This privacy-preserving approach ensures compliance with legal standards while maintaining 
diagnostic performance. In the context of this study, FL was applied to liver tumor classification using MRI 
data. Figure 1 illustrates the architecture of the proposed FL framework and its operational flow in a 
healthcare setting, highlighting how the model aggregates local updates while preserving data 
confidentiality (adapted from [11]). 
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Figure 1. FL technology in the healthcare domain [11] 

 
In conclusion, the study addresses the detection of HCC, a significant issue in medical imaging, by 
integrating FL to protect data privacy, which is of considerable importance in light of current concerns 
regarding patient data security. The study also observes that the combination of EfficientNetB5 with FL 
represents a novel approach and that the comparative analysis with traditional DL models adds significant 
value.  

 
2. LITERATURE REVIEW  
 
In the realm of medical imaging, the application of ML and DL techniques has led to significant progress, 
particularly in the classification and diagnosis of liver tumors using MRI images. This section examines 
relevant studies in the field, emphasizing key approaches, findings, and their connection to the present 
research (Table 1). 

 
Roth et al. [12] demonstrated the effectiveness of FL in breast density classification by involving seven 
clinical institutions in a collaborative effort that ensured confidentiality. Their FL-trained model 
outperformed single-institution models with a 6.3% performance gain and showed a 45.8% improvement 
in generalizability across external datasets. Despite its success, the study lacks analysis of computational 
costs and overlooks challenges in large-scale FL deployment, such as infrastructure heterogeneity and data 
standardization. 

 
Bernecker et al. [13] applied two FL methods, FedNorm and FedNorm+, to perform liver disease 
segmentation using CT and MRI data from 428 patients across six datasets. FedNorm+ demonstrated 
superior performance in comparison to local models and equaled the performance of centralized models by 
attaining a high Dice score of up to 0.961. However, the study is not accompanied by metrics that would 
allow for an assessment of its accuracy. These limitations, despite the study's initial success in 
demonstrating the efficacy of the segmentation approach, render it difficult to apply to actual clinical 
settings. 
 
Mahlool et al. [14] proposed a novel classification model that integrates DL with the FL algorithm. The 
model was evaluated using the CT-small 2c and CT-large 3c datasets, yielding classification accuracies of 
0.82 and 0.96, respectively. The researchers' findings indicate that classification systems developed in FL 
can offer high reliability and prove effective in clinical decision support systems. 
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Table 1. Summarization for related works 

Authors Year 
Number of 

patients / images 
Data set 

description 
Accuracy / 
dice (%) 

Methodology 

Roth 
et al. 

2020 715.000 
Mammography 

(BIRADS, multi-institutional) 
6.3 (avg.), 
45.8 (gen.) 

FL for breast density 
classification across 7 clinical 

sites 

Bernecker 
et al. 

2022 428 
CT and MRI images from 6 

different public datasets 
Dice: 96.1 

FedNorm and FedNorm+ 
algorithms for FL-based 

segmentation 

Mahlool 
et al. 

2022 

253 
(BT-small-2c), 

3,264 
(BT-large-3c) 

BT-small-2c: MRI. 
BT-large-3c: MRI 

(3 tumor types, 
500 healthy) 

BT-small-2c 
Acc: 82, 

BT-large-3c 
Acc: 96 

FL for brain tumor diagnosis 

Trivedi 
et al. 

2023 576 MRI Acc: 99.59 
AlexNet-based FL tested on 

IID Liver dataset with 
lightweight CNNs 

Chai 
et al. 

2024 733 
Gene expression data from 

TCGA and GEO (cross-
institutional, anonymized) 

Acc: 54.2 
FL with AdFed, DeepSurv-
based survival prediction 

Lusnig 
et al. 

2024 
41 patients 

/ 4,400 images 

41 whole-slide images 
(JPEG2000), divided into 
1024×1024-pixel patches; 
balanced dataset with 1100 

images per stage 

Centralized 
Acc: 97%; 
Federated 

Acc: ~90% 

FL applied to high-resolution 
histopathology images; images 

categorized into transplant-
suitable vs. unsuitable; used 

HQNN for classification 

Shankar 
et al. 

2025  
Multi-modal dataset 

(CT, MRI, ultrasound + lab 
values) 

Acc: 79.05 
Prediction of liver disease 

using FL from imaging and 
clinical data 

 
Trivedi et al. [15] evaluated lightweight FL strategies for HCC classification using several pre‑trained 
CNNs, with AlexNet achieving a peak accuracy of 99.59%. A distinguishing feature of their study is its 
emphasis on system efficiency and deployable architectures.  However, the study lacks a detailed discussion 
on real-world application challenges such as dataset size and communication costs, or training latency. 
 
Chai et al. [16] proposed AdFed, an FL framework for survival prediction in multiple cancers, including 
liver cancer. Using 733 genetic profiles, the model achieved an AUC of 0.605 for liver cancer, surpassing 
comparable FL approaches. A major strength is its biological interpretability, with half of the top genes 
already known to be associated with liver cancer. However, the limited sample size and lack of discussion 
on real-world FL challenges, such as scalability and communication overhead, weaken its practical 
applicability. 
 
Lusnig et al. [17] introduced an FL framework using hybrid quantum neural networks (HQNNs) for 
classifying Non-Alcoholic Fatty Liver Disease (NAFLD) from histopathological biopsy images. The model 
achieved 97% accuracy under centralized training and around 90% under FL, demonstrating strong 
performance while preserving data privacy. Despite the promising results, the study is limited by a small 
dataset (41 patients) and potential scalability issues due to quantum infrastructure requirements. 
 
Shankar et al [18] developed an FL framework that combines CT, MRI, and ultrasound medical imaging 
data with clinical test data (e.g., bilirubin, ALT, AST) for liver disease prediction. The approach is to 
achieve an acceptable accuracy of 79.05% while maintaining data confidentiality. However, this study lacks 
transparency regarding the dataset size and patient numbers. The objective of this study is to identify cases 
of general liver disease as opposed to tumor-specific classification. 
 
Fofanah et al. [19] presented a comprehensive study that employed CNN and DL techniques for the purpose 
of detecting skin cancer. The proposed method in this study achieved an 84.3% accuracy rate in skin cancer 
detection. 
 
Fırat and Üzen [20] proposed a DL method for the classification of Alzheimer's disease on MRI. This 
method was based on Inception and CNNs. Utilising this approach, the researchers attained a classification 
accuracy of 98% on a four-class dataset. 
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3. METHOD  
 
3.1. Dataset Description 
 
This study utilizes a publicly available dataset from the ATLAS (A Tumour and Liver Automatic 
Segmentation) challenge, comprising contrast-enhanced T1-weighted MRI scans from 90 patients 
diagnosed with inoperable HCC [21]. The dataset includes segmentation masks for both liver and tumor 
regions, allowing for binary classification into "normal" and "tumor" categories. A total of 3.623 training 
and 1.553 test images were balanced across both classes, as illustrated in Figure 2. All images were resized 
to 224×224 pixels and preprocessed accordingly. The data was randomly split into 70% training and 30% 
testing sets to ensure generalizability. Additionally, Figure 3 presents representative examples that highlight 
variations in tumor morphology and anatomical structures. 

 
Figure 2. The numerical distribution of normal and tumor images in the training and test datasets 

 
Figure 3. Sample images from the dataset 
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3.1.1. Data Preprocessing 
 
In this study, a comprehensive data preprocessing pipeline was implemented to enhance the performance 
of the model and ensure consistency across the dataset. Initially, all MRI images were resized to 224 × 224 
pixels, ensuring uniform input dimensions for all models. To improve the generalization capability of the 
model and mitigate overfitting, several data augmentation techniques were employed. These included 
rotation (±40°), horizontal flipping, zooming (±30%), brightness adjustments (range: 0.8–1.2), width and 
height shifting (±30%), and shear transformations (±30%). These augmentations not only expanded the 
diversity of the dataset but also contributed to improving the model’s robustness. Additionally, all images 
were normalized by scaling pixel values to the [0,1] range, which ensured numerical stability throughout 
the training process. To avoid class imbalance and reduce potential bias, a class-balancing strategy was 
applied, ensuring an equal representation of tumor and non-tumor images. Finally, the dataset was 
partitioned into training and test sets, with 70% of the images allocated for training and the remaining 30% 
used for evaluation. These preprocessing steps were essential for optimizing the performance of the           
FL-based classification model. 
 
3.2. Federated Learning 
 
AI has significantly transformed the field of medical imaging by enabling the automation of diagnostics 
and enhancing accuracy across diverse healthcare settings. However, developing robust AI models requires 
access to large and varied labeled datasets—a challenge in clinical environments due to stringent data 
privacy regulations, inter-institutional differences, and the limited availability of annotated medical data. 
To address these challenges, collaborative and privacy-preserving approaches have been introduced, with 
FL emerging as a leading decentralized technique. FL enables multiple medical institutions to train models 
locally on their private datasets and contribute to a shared global model by sending only model updates, 
thereby safeguarding sensitive patient information within the original institution while facilitating 
knowledge aggregation from varied data sources [22]. In this study, a strategy of full client participation 
was employed to maximize the collaborative potential of FL. 
 
In this study, all three clients actively participated in the model training process during each federated 
round. Each client trained its local model for 3 epochs on its respective dataset, with this process being 
repeated across 10 federated rounds. The strategy of full participation guarantees that model updates from 
all clients are integrated into the global model in every round, thereby fostering more efficient and balanced 
learning. 
 
The training dataset, comprising 90 ATLAS patients and 3,623 images, was partitioned equally and 
independently among three FL clients to simulate an Independent and Identically Distributed (IID) data 
setting. Each client received approximately one-third of the total data with balanced class distributions, 
ensuring statistical similarity across clients. This configuration represents an ideal FL scenario, where data 
is evenly and randomly distributed among clients, facilitating fair evaluation of model performance. 
 
Federated Averaging (FedAvg) is one of the most widely used optimization algorithms in horizontal FL, 
where client data remains decentralized and is not shared with a central server. This method has been 
extensively studied for its convergence properties under various conditions, including data heterogeneity 
and variations in loss functions, demonstrating its robustness in collaborative learning environments [23]. 
In this study, FedAvg was employed as the aggregation mechanism to synchronize the local models of the 
three clients into a unified global model. After each client trained its local model over three epochs, the 
learned weights were sent to the central server, where layer-wise averaging was conducted. The resulting 
global weights were then redistributed to all clients for the subsequent training round. This iterative process 
was repeated across 10 federated rounds, allowing the global model to progressively improve by 
incorporating knowledge from all clients, all while maintaining data privacy. 
 
While FedAvg facilitates collaborative model training without direct data sharing, it does not inherently 
guarantee complete privacy. FedAvg remains vulnerable to privacy attacks such as gradient inversion and 
membership inference, which can potentially expose sensitive client information. This study acknowledges 
these limitations and considers the integration of advanced privacy-preserving mechanisms as important 
directions for future work to enhance the robustness of the FL framework. 
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For the training of the FL, the binary cross-entropy loss function was employed, which is well-suited for 
the liver tumor classification task due to its binary nature. This loss function effectively measures the 
difference between predicted probabilities and actual class labels in binary classification tasks, making it a 
standard and reliable choice for such applications. The model was optimized using the Adam optimizer, 
renowned for its adaptive learning rate and strong performance in DL tasks. Alongside the minimization of 
the loss function, various performance metrics were monitored during both training and evaluation, 
including accuracy, precision, recall, F1-score, and ROC-AUC. These metrics provided a comprehensive 
evaluation of the model’s classification capabilities, particularly in a clinical context where both sensitivity 
and specificity are crucial for decision-making. 
 
Figure 4 illustrates the training and testing process implemented in this study, following the FL framework. 
In this setup, separate models are trained locally on distinct clients using their respective data. Following 
each training round, the local model weights are sent to a central server, where the FedAvg algorithm is 
applied to update the global model. This iterative process continues until the model achieves optimal 
accuracy. Once the final model is obtained, its performance is assessed using the central test dataset. 

 

 
Figure 4. The flowchart of the proposed training and testing process for liver tumor classification 

 
3.3. Comparison Models for Liver Tumor Classification 
 
To assess the performance of the proposed FL model for liver tumor classification, five well-established 
DL architectures—CNN, EfficientNet, MobileNetV3, ResNet50, and VGG16—were implemented as 
baseline models. These models were selected for comparison and were trained under identical 
hyperparameter settings to ensure consistency and fairness in the evaluation process. Specifically, each 
model underwent training for 10 epochs with a batch size of 32, utilizing the Adaptive Moment Estimation 
-Adam optimizer and binary cross-entropy as the loss function. ReLU activation was applied to the hidden 
layers, while the output layer employed the sigmoid activation function, which is suitable for binary 
classification tasks. Table 2 provides an overview of the training configurations for these models. 
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Table 2. Training configurations for models 

 
Number of 

epochs 
Batch size Optimizer Loss function 

Activation 
functions 

Output 
layer 

CNN 10 32 Adam Binary Crossentropy Relu Sigmoid 

EfficientNet 10 32 Adam Binary Crossentropy Relu Sigmoid 

MobileNetV3 10 32 Adam Binary Crossentropy Relu Sigmoid 

ResNet50 10 32 Adam Binary Crossentropy Relu Sigmoid 

VGG16 10 32 Adam Binary Crossentropy Relu Sigmoid 

 
3.3.1. Convolutional Neural Networks 
 
In this study, a custom CNN was developed as a baseline model for liver tumor classification. The 
architecture includes three convolutional layers with progressively larger filter sizes (32, 64, and 128), each 
followed by a MaxPooling2D layer to reduce spatial dimensions and mitigate overfitting. After the 
convolutional operations, the feature maps are flattened and passed through a fully connected dense layer 
containing 128 neurons, activated by the ReLU function. Finally, a sigmoid-activated output layer is 
employed to perform binary classification. This relatively straightforward yet efficient architecture serves 
as a foundational model for comparing the performance of more advanced, pre-trained models in liver 
tumor classification. 
 
3.3.2. EfficientNet 
 
In the comparative analysis, EfficientNet was employed to evaluate the performance of liver tumor 
classification. The model was fine-tuned by unfreezing the last 50 layers of the pre-trained base and 
retraining them on the target dataset. To tailor the model for binary classification, additional layers were 
incorporated on top of the base, including a GlobalAveragePooling2D layer, a dropout layer with a 0.3 rate 
to mitigate overfitting, and two dense layers—one with 128 neurons activated by ReLU, and a final output 
layer with a sigmoid activation function. This architecture enabled the model to capture domain-specific 
features while leveraging the benefits of transfer learning for improved performance. 
 
3.3.3. ResNet50 
 
The ResNet50 architecture with 50 layers deep was developed by Microsoft Research in 2015, considered 
to be among the most popular CNN architectures around, which employs skip connections to address the 
vanishing gradient problem, enabling effective training of deeper networks. This model has shown robust 
performance in medical imaging classification, particularly in identifying complex patterns within tumor 
images. However, its computationally intensive nature may pose challenges for deployment in real-world 
medical settings, where resources may be limited. 
 
3.3.4. MobileNetV3 
 
In this study, MobileNetV3 Small was adapted using a transfer learning approach specifically designed for 
medical image classification tasks. The model utilized pre-trained weights, with the initial layers frozen to 
retain low-level feature extraction capabilities. The MobileNetV3 small architecture was employed, 
followed by the addition of a Global Average Pooling layer, a fully connected dense layer with 128 neurons 
and ReLU activation, a Dropout layer with a 0.5 rate to mitigate overfitting, and a final output layer with a 
single neuron using sigmoid activation for binary classification. The training process utilized the Adam 
optimizer along with the binary cross-entropy loss function. Additionally, the learning rate was dynamically 
adjusted using the ReduceLROnPlateau technique, which monitored the validation loss and reduced the 
learning rate when further improvements plateaued. 
 
3.3.5. VGG16 
 
One of the comparison models employed in this study was the VGG16 architecture. The base of the model 
consisted of the VGG16 network, which was pre-trained on ImageNet, with its top layers removed. To 
minimize overfitting and allow the model to focus on training the newly added layers, the weights of the 
pre-trained layers were frozen. A Global Average Pooling layer was incorporated to flatten the feature 
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maps, followed by a fully connected dense layer comprising 128 neurons and ReLU activation, and a 
Dropout layer with a rate of 0.5 to reduce overfitting. The final output layer incorporated a sigmoid 
activation function to facilitate binary classification. The model was constructed with the Adam optimiser, 
with a learning rate of 0.001 and binary cross-entropy as the loss function. 
 
4. RESULTS 
 
To evaluate the effectiveness of the proposed FL model in liver tumor classification, five distinct DL 
architectures were implemented for comparison. The custom-designed CNN employed a simplified 
architecture consisting of three convolutional layers, each followed by max-pooling and fully connected 
layers. EfficientNet was fine-tuned by unfreezing its last 50 layers and enhanced with a Global Average 
Pooling layer, dropout regularization, and dense layers. Similarly, MobileNetV3 and ResNet50—both 
initialized with ImageNet pre-trained weights—were adapted with additional layers including Global 
Average Pooling, ReLU-activated dense layers, and dropout to improve generalization. The VGG16 model 
was also employed by freezing its convolutional base and appending dense layers for the binary 
classification task. All models were trained under consistent settings using the binary cross-entropy loss 
function and the Adam optimizer, which is an optimisation algorithm that is frequently employed in the 
training of DL models. This approach synthesises the merits of two other extensions of stochastic gradient 
descent (SGD): AdaGrad and RMSProp. The architectural and training configurations of these models are 
summarized in Table 3, ensuring a fair and systematic comparison of model performances. 
 
Table 3. Architectural and training configurations of DL models used for image classification 

Model 
Pretrained 

weights 
Trainable layers Pooling type 

Dropout 
rate 

Dense 
layer 

(units) 

CNN No All MaxPooling2D None 128 

EfficientNet ImageNet Last 50 layers GlobalAveragePooling2D 0.3 128 

MobileNetV3 ImageNet Frozen (feature extractor) GlobalAveragePooling2D 0.5 128 

ResNet50 ImageNet Frozen (feature extractor) GlobalAveragePooling2D 0.5 128 

VGG16 ImageNet Frozen (feature extractor) GlobalAveragePooling2D 0.5 128 

 
To comprehensively assess the performance of the proposed liver tumor classification model, five key 
evaluation metrics—accuracy, precision, recall, F1-score, and ROC-AUC score—were utilized. These 
metrics offer valuable insights into the model’s ability to correctly classify MRI images, differentiate 
between normal and tumor cases, and perform effectively in a real-world diagnostic setting. 
 
The evaluation of performance criteria constitutes a pivotal step in both ML and DL. The True Positive 
(TP), True Negative (TN), False Positive (FP), and False Negative (FN) outcomes are pivotal for the 
evaluation of the performance of classification models. These metrics facilitate comprehension of the extent 
to which their models can generate precise predictions and subsequently optimise them for discrete or 
particular decisions, thereby enhancing decision-making processes across diverse domains. 
 

TP: The number of times the model correctly predicted the positive class. 
TN: The number of cases where the model correctly predicted the negative class. 
FP: The number of instances where the model incorrectly predicted the positive class. 
FN: The number of cases where the model incorrectly predicted the negative class. 
 

Accuracy is one of the most fundamental metrics for evaluating the overall performance of a classification 
model. It is defined as the ratio of correctly classified instances—both positive and negative—to the total 
number of predictions made, as shown in Equation 1. While accuracy can serve as a reliable indicator in 
balanced datasets, it may become misleading in imbalanced scenarios. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ
TP ൅ TN

TP ൅ TN ൅ FP ൅ FN
 (1)
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Precision is defined as the proportion of predicted positive cases that are actually positive and is formally 
expressed in equation 2. A high precision score indicates that the model effectively minimizes false 
positives, meaning its positive classifications are more reliable. 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ
TP

TP ൅ FP
 (2)

 
Recall assesses the model’s ability to identify positive cases correctly and is mathematically defined in 
equation 3. This metric is particularly important in applications where failing to detect a positive case can 
have serious consequences, such as in medical diagnosis 
 

𝑅𝑒𝑐𝑎𝑙𝑙 ൌ
TP

TP ൅ FN
 

 
(3)

 
F1-Score is the harmonic mean of precision and recall, as defined in Equation 4. It is particularly effective 
in evaluating model performance on imbalanced datasets, as it considers both false positives and false 
negatives. A high F1-score reflects the model’s ability to strike a balance between precision and recall, 
effectively minimizing both types of errors. The F1-Score serves as a crucial metric, ensuring that the model 
not only avoids false alarms but also captures the majority of true positive cases. 
 

𝐹1 െ 𝑠𝑐𝑜𝑟𝑒 ൌ 2 ∗  
Precision ∗  Recall

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൅ 𝑅𝑒𝑐𝑎𝑙𝑙
 (4)

 
ROC-AUC Score is a graphical representation that is used to evaluate the performance of a classification 
model at various threshold values. The Area Under the Curve (AUC) represents the area beneath the 
Receiver-Operating Characteristic Curve (ROC) and measures the model's overall discriminative ability. 
The ROC-AUC metric is particularly important for evaluating classification models on imbalanced 
datasets. As illustrated in Figure 5, the ROC curves of the models under investigation are displayed. 
 

 
Figure 5. ROC curves 

 
The classification performance of the models studied is shown in Table 4.  
 
Table 4. Performance of models 

 Accuracy (%) Precision (%) Recall (%) F1-Score (%) ROC-AUC (%) 
FL 93.75 99.71 87.79 93.37 99.19 
CNN 98.58 99.74 97.43 98.57 98.59 
EfficientNet 99.55 99.61 99.49 99.55 99.55 
MobileNetV3 95.43 97.20 93.57 95.35 97.88 
ResNet50 94.01 94.54 93.44 93.99 98.35 
VGG16 98.71 99.74 97.69 98.70 99.70 
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Figure 6 presents a graphical representation that compares the classification performance of the models. 
 

 
Figure 6. Comparison of model performances 

 
To empirically justify our choice of hyper parameters in the FL setup, we conducted an ablation study by 
varying local epochs and global rounds. Table 5 summarizes the performance metrics across four different 
configurations. 
 
Table 5. Ablation study of FL configuration 

Local epochs Rounds Accuracy (%) Precision (%) Recall (%) F1–Score (%) ROC-AUC (%) 

3 10 93,75 99,71 87,79 93,37 99,19 

1 5 92,14 90,80 93,83 92,29 97,40 

1 10 92,98 96,65 89,07 92,71 98,49 

1 20 82,68 75,02 98,07 85,01 97,62 

 
As shown in Table 5, the configuration with 3 clients, 3 local epochs, and 10 rounds yielded superior results 
in terms of accuracy and ROC-AUC compared to the other evaluated configurations. Based on these 
findings, this setup was selected for use in the subsequent experiments. 
 
As the final results, the FL-based model achieved an accuracy of 93.75% and a precision value of 99.71%. 
These results demonstrate that the model provides highly reliable and accurate positive results in the 
diagnosis of liver tumors, while also effectively differentiating between classes. The F1-Score was 93.37%, 
and the ROC-AUC value was measured at 99.19%, both of which indicate the high overall performance of 
the model and its potential for use in critical decision-support systems in healthcare. 
 
It is observed that the centralized EfficientNet model achieves a higher accuracy (99.55%) compared to the 
FL model (93.75%). This performance gap is expected and can be attributed to the inherent challenges of 
FL, such as data heterogeneity across clients, communication constraints, and the absence of direct access 
to the full training dataset. 
 
Despite this difference, the FL model still achieves a high level of accuracy and offers substantial privacy 
advantages by enabling model training without centralized data aggregation. In real-world medical 
environments, such as inter-hospital collaborations, data sharing is often limited by strict privacy 
regulations (e.g., HIPAA, GDPR). Consequently, the observed reduction in accuracy is justified by the 
critical need to maintain data privacy, particularly in healthcare settings where centralized data sharing is 
not feasible. 
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In the diagnosis of HCC using MRI, sensitivity (recall) rates are typically reported in the range of 85% to 
95% [24, 25, 26]. Deep learning-based models have also achieved recall rates comparable to those of expert 
radiologists [24]. In our study, the achieved recall rate of 87.79% falls within the lower bound of this 
clinically accepted range. However, this corresponds to a 12.21% false-negative rate, which could lead to 
missed diagnoses in practice. According to the Liver Imaging Reporting and Data System (LI-RADS) 
developed by the American College of Radiology, sensitivity levels above 88% are considered desirable 
for MRI-based HCC diagnosis [27]. In our study, the recall rate of 87.79% falls within the lower limit of 
the range accepted as clinically acceptable in the literature. 
 
In comparison, EfficientNet exhibited the highest performance with an accuracy of 99.55%. Its precision 
and recall values are very close, reflecting the model's success in accurately diagnosing tumors. Both 
VGG16 and CNN models also showed high accuracy rates (98.71% and 98.58%) and excellent precision 
values (99.74%). However, when compared to the FL model, these models exhibited higher recall values 
(97.69% and 97.43%), which is a crucial factor in healthcare applications, where false negatives can have 
significant consequences. This situation demonstrates that further development of FL is required in order 
to offer a more balanced and reliable solution. 
 
MobileNetV3 and ResNet50 models, with accuracy rates of 95.43% and 94.01%, respectively, presented 
the lowest performance. Nevertheless, their precision and F1-score values are still at levels suitable for 
healthcare applications, providing useful results. 
 
5. CONCLUSION AND DISCUSSIONS 
 
Accurate diagnosis of HCC is essential for guiding life‑saving treatments. In this study, it is shown that 
FL—a privacy‑preserving ML approach—can reliably detect HCC from MRI medical imaging. The 
necessity to classify liver cancer while protecting patient privacy has become increasingly important. This 
study investigates the feasibility of using FL and DL to categorize liver cancer. The study also examines 
the comparisons of CNN, EfficientNet, MobileNetV3, ResNet50, and VGG16 with FL. 
 
This study confirms that FL, particularly when integrated with EfficientNetB5, is a viable solution for 
privacy-preserving liver tumor classification in MRI imaging. The findings demonstrate the system's 
capacity to generate outcomes that are competitive with those of the baseline system, while utilizing fewer 
resources and ensuring superior data privacy. These results underscore the practical viability of FL for HCC 
classification in clinical environments. 
 
Conversely, it is imperative to recognise that the Federated EfficientNet model exhibits a lower 
classification accuracy (93.75%) in comparison to its central counterpart (99.55%). This performance gap 
is expected, given the decentralized training constraints and the limited global information available to each 
client. However, this trade-off is justified in privacy-sensitive environments where direct data sharing is 
infeasible. Future work will aim to reduce this gap by incorporating more sophisticated aggregation 
techniques (e.g., FedProx, FedOpt), dynamic client selection, and hybrid learning approaches that strike a 
better balance between performance and privacy. 
 
Although the proposed FL framework achieved promising accuracy and ROC-AUC scores, the recall value 
remained relatively lower compared to clinical expectations. This indicates that the model may still miss a 
portion of true positive cases, which is critical in hepatocellular carcinoma diagnosis. To address this 
limitation, future work will explore advanced strategies such as cost-sensitive learning, focal loss functions, 
and ensemble techniques tailored to enhance recall. Additionally, incorporating clinical metadata (e.g., 
patient history, lab results) alongside imaging data could improve diagnostic robustness. Finally, 
investigating personalization techniques in FL, such as federated fine-tuning or clustering-based model 
adaptation, may further reduce false negatives by tailoring models to client-specific distributions. 
 
While FedAvg facilitates privacy-aware training by avoiding direct data sharing, recent studies have shown 
that it is still vulnerable to privacy leakage through indirect inference attacks. In particular, gradient 
inversion attacks [28] can reconstruct sensitive input data from shared model updates, while membership 
inference attacks [29] can expose whether a particular data point was part of a client's training set. These 
vulnerabilities highlight the need for complementary privacy-preserving mechanisms such as differential 
privacy, secure aggregation, or homomorphic encryption. Incorporating such techniques in future 
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implementations will be critical to ensuring stronger privacy guarantees without compromising model 
performance.  
 
Future work may also involve the deployment of FL frameworks in multi-institutional hospital networks 
and the integration of multimodal clinical data. 
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