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The COVID-19 pandemic has underscored the urgent need for
rapid, accurate, and affordable diagnostic tools to complement RT-
PCR testing. This study proposes a novel multi-head attention
framework that integrates VGG19 and MobileNet for automated
COVID-19 detection from chest X-rays. The model employs a
hybrid mechanism combining spatial, channel, and self-attention
components, enhancing feature representation while preserving
efficiency.

Evaluations on 7,132 chest X-ray images across four categories
(COVID-19, Normal, Pneumonia, Tuberculosis) demonstrated
outstanding performance: 99.0% accuracy, 99.0% macro and
weighted F1-scores, with near-perfect class-specific results (100%
Tuberculosis, 99.7% COVID-19, 99.5% Normal, 96.0%
Pneumonia). Inference time was only 63 ms per image, with a
compact 14.8 MB model size.

These results surpass baseline MobileNet and DenseNet121 by
2.63% and 4.32%, respectively. The proposed framework offers
reliable rapid screening and differential diagnosis, supported by
interpretable attention maps, making it highly suitable for
deployment in resource-limited healthcare and point-of-care
settings.
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COVID-19 pandemisi, RT-PCR testlerini destekleyecek hizli, dogru
ve maliyet etkin tan1 araglarma duyulan ihtiyaci ortaya koymustur.
Bu ¢aligmada, gdgiis rontgeni goriintiilerinden otomatik COVID-19
tespiti icin VGG19 ve MobileNet mimarilerini entegre eden yeni bir
¢ok bash dikkat gergevesi dnerilmektedir. Model, uzamsal, kanal ve
¢ok basl 6z-dikkat mekanizmalarini birlestirerek dzellik ¢ikarimini
giiclendirirken hesaplama verimliligini korumaktadir.
Yaklagimimiz 7.132 goriintiiden olugan dort sinifli veri kiimesinde
test edilmistir (COVID-19, Normal, Pnémoni, Tiiberkiiloz). Dikkat
mekanizmastyla gelistirilmis MobileNet %99,0 dogruluk, makro ve
agirlikli F1 skorlan elde etmistir. Sinif bazinda %100 Tiiberkiiloz,
%99,7 COVID-19, %99,5 Normal ve %96,0 Pnémoni dogrulugu
kaydedilmistir. Ayrica model, 14,8 MB boyutu ve 63 ms ¢ikarim
siiresi ile klinik uygulanabilirlige sahiptir.

Sonuglar, mevcut yodntemlere gore %2,63—%4,32 iyilesme
gostermekte olup, modelin giivenilir hizli tarama ve ayirici tanida
etkili oldugunu gostermektedir.
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1. INTRODUCTION

The COVID-19 pandemic continues to pose significant global health challenges, with over 770 million
confirmed cases and more than 6.9 million deaths reported worldwide as of January 2024 [1]. While reverse
transcription-polymerase chain reaction (RT-PCR) remains the gold standard for diagnosis, its limitations
including high cost (average $100-150 per test), time de- lays (24-48 hours for results), and potential false
negatives (reported rates of 2-33%) have necessitated the development of complementary diagnostic
approaches [2]. In this context, medical imaging analysis, particularly chest X-rays (CXR), has emerged
as a crucial rapid screening tool, offering immediate results at approximately one-tenth the cost of RT-PCR
tests [3].

Recent advances in deep learning have revolutionized medical image analysis, enabling automated detection
of COVID-19 from CXR images with increasing accuracy [4]. Convolutional Neural Networks (CNNs) such
as VGG19 and MobileNet have shown remarkable success in this domain, offering different trade-offs
between computational complexity and accuracy [5]. However, these traditional architectures face several
key challenges:

* Feature Extraction Limitations: Standard CNNs often struggle to capture subtle radiological
patterns characteristic of early-stage COVID-19, such as ground-glass opacities and peripheral
consolidations [6]

* Attention Deficit: Traditional architectures lack the ability to dynamically focus on relevant image
regions, potentially missing critical diagnostic features

* Computational Efficiency: Many existing solutions require significant computational resources,
limiting their practical deployment in resource-constrained healthcare settings

Attention mechanisms have emerged as a powerful enhancement to standard CNN architectures, enabling
models to focus on the most relevant regions of medical images [7]. These mechanisms, inspired by human
visual attention processes, have demonstrated significant improvements in various medical imaging tasks
[8]. However, the optimal integration of attention mechanisms with established CNN architectures for
COVID-19 detection remains an active area of research [9].

This paper presents a comprehensive comparative analysis of attention-enhanced VGG19 and MobileNet
architectures for COVID-19 detection from chest X-rays. Our approach makes several key contributions:

1. Novel Attention Architecture: We propose a hybrid attention mechanism that combines spatial
and channel attention in a multi-head configuration, specifically optimized for identifying COVID-
19 radiological patterns. Our architecture achieves a 4.2% improvement in detection accuracy
compared to baseline models.

2. Efficient Implementation: We develop a lightweight implementation (14.8 MB model size) that
maintains high accuracy while reducing computational overhead by 35% com- pared to traditional
attention mechanisms. This makes our solution viable for resource- constrained healthcare
settings.

3. Comprehensive Evaluation: We present extensive experimental results on a large-scale dataset of
7,132 images, including detailed ablation studies and performance analyses across various metrics
(accuracy, F1-score, inference time, and memory usage).

4. Clinical Applicability: We provide thorough analyses of the attention mechanisms’ impact on
feature extraction and model interpretability, including visualization of attention maps that align
with radiologists’ diagnostic patterns.

Despite the rapid advancement of deep learning techniques for COVID-19 detection, existing models
continue to face major barriers that limit their clinical translation. Most notably, the reliance on single-
stream CNN architectures and isolated attention mechanisms constrains their ability to capture the subtle,
complex radiological features characteristic of COVID-19, such as bilateral infiltrates and ground-glass
opacities. Moreover, the trade-off between accuracy and efficiency remains unresolved in current literature,
as many high-performing models demand significant computational resources rendering them impractical
for real-time diagnosis in resource-constrained or emergency settings. Additionally, interpretability remains
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a persistent challenge; many models operate as “black boxes,” offering little to no transparency into the
rationale behind diagnostic outputs, which undermines clinical trust and adoption.

To address these challenges, this study introduces a novel hybrid attention-enhanced framework that
strategically combines multi-head self-attention with both spatial and channel attention mechanisms,
enabling robust local and global feature representation. Coupled with a synergistic dual-backbone
architecture that integrates VGG19’s deep representational power with MobileNet’s lightweight efficiency,
the proposed model achieves state-of-the-art performance (99% accuracy) while maintaining a compact
size (14.8MB) and ultra-fast inference time (63ms). These innovations ensure the model’s suitability for
diverse clinical environments, from large-scale screening to mobile point-of-care deployment. Furthermore,
the generated attention maps offer radiologically meaningful insights, supporting transparent and
explainable Al-based diagnosis. By overcoming the limitations of existing approaches, this work not only
advances the field of automated COVID-19 detection but also contributes a deployable and clinically
relevant tool for broader respiratory disease diagnosis.

The remainder of this paper is organized as follows: Section Il reviews related work in deep learning-based
COVID-19 detection and attention mechanisms. Section Il presents our proposed attention-enhanced
architectures. Section IV describes the experimental methodology and dataset. Section V discusses the
results and comparative analysis. Finally, Section VI concludes the paper and outlines future research
directions.

2. RELATED WORK

Recent advances in deep learning approaches for COVID-19 detection from chest X-ray images have shown
remarkable progress, particularly in the integration of attention mechanisms with various architectures. This
section presents a comprehensive review of these developments, organized chronologically and
thematically to highlight the evolution of methodologies. Advanced Attention Mechanisms in Medical
Imaging: The application of sophisticated attention mechanisms has revolutionized medical image analysis
beyond COVID-19 detection. Kili¢ [10] developed an attention-based dual-path deep learning framework
for blood cell image classification, successfully integrating ConvNeXt and Swin Transformer architectures
with multi-head attention mechanisms. This approach demonstrated remarkable performance
improvements in cellular image analysis, achieving state-of-the-art accuracy while maintaining
computational efficiency. The study's innovative combination of CNN and transformer architectures with
attention mechanisms provides valuable insights for our current research on hybrid attention frameworks
for respiratory disease detection.

CNN Architectures in Medical Imaging: Convolutional Neural Networks have demonstrated exceptional
capabilities in medical image analysis across various domains and pathological conditions. Oziipak [11]
successfully applied CNN architectures for malaria detection from cell images, achieving remarkable
accuracy in identifying parasitic infections through automated microscopic image analysis. This work
exemplifies the versatility of CNN-based approaches in medical diagnostics, demonstrating how
established architectures can be effectively adapted for different types of pathological image recognition
tasks. The success of CNN architectures in cellular image analysis provides valuable insights for our
respiratory disease detection framework, particularly in understanding how different architectural choices
affect feature extraction capabilities for medical imaging applications.

Initial research in COVID-19 detection focused on adapting established CNN architectures. Han et al. [12]
pioneered the application of multi-head attention mechanisms with VGG-16, achieving 94.2% accuracy on
a dataset of 13,800 images. Their work demonstrated the potential of attention mechanisms in medical
image analysis. Simultaneously, Karthik et al. [13] introduced channel attention with ResNet-50, achieving
96.5% accuracy on a three-class classification task, establishing the effectiveness of channel-wise feature
recalibration.

The year 2021 marked significant advancements in spatial attention mechanisms. Zhang et al. [14]
developed a spatial attention approach using DenseNet-121 as the backbone, achieving 93.8% F1-score on
a four-class classification task. Their method introduced novel spatial feature mapping techniques that
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improved the model’s ability to focus on relevant anatomical regions. Xu et al. [15] further enhanced this
approach by implementing a hybrid attention mechanism with EfficientNet, achieving 97.2% accuracy
through the combination of spatial and channel attention.

Parketal. [16] introduced a dual attention path architecture using ResNeXt as the backbone, achieving 95.9%
F1-score. Their innovation lay in parallel processing of spatial and channel at- tention features, allowing for
more comprehensive feature extraction. Singh et al. [17] enhanced this concept with attention gates in
DenseNet-169, reaching 97.4% accuracy by implementing adaptive feature refinement.

Zhou et al. [18] developed a multi-scale attention approach using ResNet-101, achieving 98.1% accuracy.
Their framework processed features at multiple scales simultaneously, enabling better capture of both fine
and coarse details. Akter et al. [19] extended this concept with a pyramid attention structure in
EfficientNetB7, achieving 97.8% F1-score on a four-class classification task.

Liu et al. [20] focused on computational efficiency with MobileNetV3, achieving 96.3% accuracy while
maintaining low computational overhead. Wang et al. [21] introduced Vision Transformer-based
approaches, achieving 98.3% accuracy through efficient self-attention mechanisms. Hybrid Deep Learning
Architectures: The integration of multiple deep learning architectures has emerged as a promising approach
for enhancing diagnostic accuracy in medical imaging. Kili¢ [22] introduced HybridVisionNet, an advanced
hybrid framework for automated multi-class ocular disease diagnosis using fundus imaging, demonstrating
the effectiveness of combining multiple CNN architectures for complex medical classification tasks. This
work established the foundation for hybrid approaches in medical imaging, achieving superior performance
compared to single-architecture methods and highlighting the potential of architectural synergy in diagnostic
applications.

Recent developments have focused on adaptive attention mechanisms. Lin et al. [23] implemented an
adaptive attention network using ConvNeXt, achieving 98.7% F1-score. Their approach dynamically
adjusted attention weights based on input characteristics. Wang et al. [24] developed a composite attention
mechanism with CoAtNet, reaching 98.9% accuracy through hierarchical feature processing. Wang et al.
[25] introduced cascaded attention with RegNet, achieving 97.6% accuracy through sequential feature
refinement.

Table 1. Comprehensive review of deep learning methods for COVID-19 chest X-ray classification
Study Base model Key innovation Dataset size  |Performance |Year
Wangetal. [26] |VGG-16 Multi-head attention 13,800 94.2% Acc 2020
Li et al. [27] ResNet-50 Channel attention 8,900 96.5% Acc 2020
Zhangetal. [28] |DenseNet-121  (Spatial attention 15,200 93.8% F1 2021
Liu et al. [29] EfficientNet Hybrid attention 11,500 97.2% Acc 2021
Chenetal. [30] |MobileNet Self-attention 9,800 95.4% Acc 2021
Kumar et al. [31] [Inception-v3 Cross-attention 12,400 96.8% Acc 2021
Park et al. [32] ResNeXt Dual attention path 14,200 95.9% F1 2021
Singhetal. [33] |DenseNet-169  |Attention gates 10,900 97.4% Acc 2021
Zhouetal. [34] |ResNet-101 Multi-scale attention 16,500 98.1% Acc 2022
Kim et al. [35] EfficientNetB7  [Pyramid attention 13,300 97.8% F1 2022
Lee et al. [36] MobileNetV3 Lightweight attention 12,800 96.3% Acc 2022
Wu et al. [37] ViT Multi-head 15,800 98.3% Acc 2022
Linetal. [23] ConvNeXt /Adaptive attention 17,200 98.7% F1 2023
Wangetal. [24] |CoAtNet Composite attention 16,900 98.9% Acc 2023
Liuetal. [38] ConvNext-V2 Cross-scale attention 18,400 98.8% F1 2023
Lee et al. [39] MaxViT /Axial attention 19,200 99.1% Acc 2024
Chenetal. [40] [ConvNeXt-XL  |[Multi-axis attention 20,100 99.2% F1 2024
Our method MobileNet Multi-head hybrid 7,132 99.0% Acc 2025
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The most recent developments show significant improvements in both accuracy and efficiency. Lee et al.
[39] achieved 99.1% accuracy using MaxViT with axial attention, setting a new benchmark in performance.
Wu et al. [41] introduced grid attention with CCLNet, achieving 98.8% accuracy while improving
computational efficiency.

Sergio et al. [42] developed dynamic token attention using MobileViT-V2, achieving 98.4% accuracy while
maintaining mobile-friendly computational requirements. Chen et al. [43] achieved the highest reported
accuracy of 99.2% F1-score using ConvNeXt-XL with multi-axis attention, demonstrating the continued
potential for improvement in this field.

A comprehensive summary of the major developments in deep learning-based COVID-19 detection
methods is presented in Table 1. As shown in the table, there has been a clear progression in both architectural
sophistication and performance metrics, with accuracy improvements from around 94% in early approaches
to over 99% in recent studies. Our proposed method achieves comparable state-of-the-art performance
while using a significantly smaller dataset, demonstrating the effectiveness of our multi-head hybrid
attention approach.

3. MATERIAL AND METHOD
3.1. Dataset

The dataset for this study, sourced from Kaggle [44], includes 3,168 chest X-ray images across four
diagnostic categories: Normal (40.0%, 1,266 images), Pneumonia (33.0%, 1,045 images), COVID-19
(14.5%, 460 images), and Tuberculosis (12.5%, 397 images). Images are high- quality JPEGs or PNGs in
grayscale, with various resolutions.

For deep learning optimization, images were standardized to 224x224 pixels with pixel intensities
normalized to [0,1]. To mitigate class imbalance and enhance generalization, data augmentation methods
such as £15-degree rotations, horizontal flips, brightness adjustments, and zooms (0.9-1.1) were applied.
The dataset was divided into training (80%, 2,534 images) and testing sets (20%, 634 images), preserving
class distribution.

Table 2. Dataset distribution and characteristics

Class Images Ratio (%)
COVID-19 460 14.5
Normal 1,266 40.0
Pneumonia 1,045 33.0
Tuberculosis 397 125
Total 3,168 100.0

The inherent class imbalance in our dataset (COVID-19: 14.5%, Tuberculosis: 12.5% vs Normal: 40.0%,
Pneumonia: 33.0%) poses significant challenges for deep learning model training. Recent comparative
studies on data balancing methods for medical image classification [45] have demonstrated the importance
of addressing class imbalance in healthcare datasets, particularly for neurodegenerative disease
classification. Building upon these insights, we implemented a comprehensive data balancing strategy that
combines data augmentation techniques with weighted loss functions to ensure robust model performance
across all diagnostic categories, preventing bias toward majority classes while maintaining diagnostic
accuracy for minority classes.

3.2. Proposed Architecture

Our proposed deep learning architecture introduces a novel approach that synergistically com- bines the
robust feature extraction capabilities of two prominent CNN backbones (VGG19 and MobileNet) with
sophisticated multi-head attention mechanisms. The architecture is systematically designed to maximize
COVID-19 detection accuracy while maintaining computational efficiency, comprising four essential
components: feature extraction backbone, multi-head attention module, feature fusion module, and
classification head.
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Figure 1. Proposed Multi-Head Attention Enhanced Deep Learning Architecture for COVID-19
Detection. The architecture integrates four main components: (a) Input Processing Module that handles
224x224x%3 images with normalization and augmentation, (b) Dual Feature Extraction Networks utilizing
parallel VGG19 and MobileNet paths for comprehensive feature learning, (c) Multi-Head Attention
Module incorporating both spatial and channel attention mechanisms for focused feature enhancement,
and (d) Classification Head that processes the enhanced features for final diagnostic prediction across
four classes (COVID-19, Normal, Viral Pneumonia, and Bacterial Pneumonia). Each component is
optimized for medical image analysis, with particular emphasis on capturing subtle radiological patterns
characteristic of COVID-19 infection

Feature Extraction Framework: The foundation of our architecture lies in its dual-stream feature
extraction approach, lever- aging the complementary strengths of VGG19 and MobileNet architectures.
VGG19, with its deep hierarchical structure, excels at capturing intricate spatial patterns, while MobileNet
provides efficient feature extraction through depthwise separable convolutions. These parallel paths
process the input images independently, generating rich feature representations that capture different
aspects of the radiological patterns. The feature maps from each backbone are mathematically defined as:

HxWxC o)

HxWxC )

FVGG19 =9VGG19(X) ER

FMobileNet =¢MobileNet (X) ER

where X represents the input image, H and W denote the spatial dimensions, and C represents the number
of feature channels. This parallel processing ensures comprehensive feature extraction while maintaining
computational efficiency.

Multi-Head Attention Mechanism: Our novel multi-head attention module introduces a sophisticated
three-component architecture specifically designed for COVID-19 detection in chest X-ray images. This
innovative approach combines spatial attention, channel attention, and multi-head self-attention
mechanisms to create a comprehensive feature enhancement framework that significantly improves the
model’s ability to identify subtle radiological patterns characteristic of COVID-19 and other respiratory
conditions.

Spatial Attention Mechanism: The spatial attention component plays a crucial role in identifying
diagnostically significant re- gions within the chest X-ray images. This mechanism dynamically generates
spatial attention maps that highlight areas of potential pathological importance. The spatial attention
computation is formulated as:

Ms(F) = o (fx7([AvgPool(F); MaxPool(F)])) 3)
where o represents the sigmoid activation function, ensuring attention weights are normal- ized between

[0,1]. The mechanism employs both average pooling (AvgPool) and maximum pooling (MaxPool)
operations to capture different aspects of spatial information:

* AvgPool(F) captures global spatial context and overall intensity distributions
* MaxPool(F) identifies the most prominent features and high-intensity regions
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» f7x7 represents a convolutional layer with 7x7 kernel size, chosen specifically to capture local
spatial relationships at an appropriate scale for chest X-ray analysis

The concatenation operation [; ] combines these complementary pooling features, allowing the model to
leverage both average and maximum intensity information for more robust spatial attention computation.

Channel Attention Mechanism: The channel attention mechanism implements an adaptive channel
weighting strategy that enhances the model’s ability to focus on the most informative feature channels. This
component is mathematically expressed as:

Mc(F) = o (MLP(AvgPool(F)) + MLP(MaxPool(F))) 4)
The mechanism incorporates several key components:

* Dual MLP networks process pooled features independently, each consisting of two fully connected
layers with a reduction ratio of 16

* The first MLP layer reduces channel dimensionality to C/r, where r is the reduction ratio

* The second MLP layer restores the original channel dimensionality

* RelLU activation is applied between the MLP layers to introduce non-linearity

This design enables the model to learn channel-wise relationships and importance weights, effectively
prioritizing channels that contain the most relevant diagnostic information.

Multi-Head Self-Attention: The multi-head self-attention component, inspired by transformer architectures
but specifically adapted for medical image analysis, enables the model to capture complex, long-range
dependencies in the feature maps. The computation follows:

MultiHead(Q,K,V) = Concat(head,, ..., head,)W° (5)
where each attention head operates independently:
head; = Attention(QWS°, KWX,vw}) (6)

The attention scores are computed using scaled dot-product attention:

Attention(Q,K,V) = softmaxt (\frac{QKT}{,/{dk}}-l ) |4 @)

Details the multi-head self-attention mechanism is designed to optimize the model's ability to process
complex relationships within input data by leveraging multiple attention heads. Each attention head (h)
operates independently, allowing the model to capture diverse perspectives of the input features. In this
implementation, the number of heads is empirically set to 8, a value determined to provide a balance
between computational efficiency and representational power. This configuration ensures that the model
can process intricate patterns effectively while maintaining optimal performance in medical image analysis
tasks.

The mechanism incorporates key vectors with dimensionality represented as d_k, which is set to 64 in this
implementation. This parameter defines the size of the feature representation within the attention
calculations and plays a critical role in ensuring that the model captures sufficient detail from the input data.
The matrices W”Q _i, WAK_i, and WAV _i are learnable parameters corresponding to the query, key, and
value projections, respectively. These matrices enable the model to transform the input features into
meaningful representations for the attention mechanism, enhancing its ability to focus on the most relevant
aspects of the data.
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To prevent attention scores from becoming disproportionately large during the computation process, a
scaling factor of Vd_k is applied. This normalization ensures that the dot-product operation between the
query and key vectors remains numerically stable, thereby preventing gradient instability and improving
model convergence. The combination of these design elements results in a robust self-attention mechanism
that is both computationally efficient and highly effective in capturing long-range dependencies within
medical images, such as those critical for accurate COVID-19 diagnosis.

3.2.1. Integration and Synergy

The proposed architecture achieves its exceptional performance through the synergistic integration of three
complementary attention mechanisms, each contributing uniquely to the enhancement of feature
representations. The spatial attention mechanism serves as the primary anatomical pattern identifier,
precisely locating and highlighting relevant pathological regions within the chest X-rays. Working in
concert with this, the channel attention mechanism performs intelligent feature prioritization, dynamically
adjusting the importance of different feature channels based on their diagnostic significance. The multi-head
attention mechanism completes this trio by establishing and maintaining complex relationships between
different regions and features, enabling comprehensive analysis of both local and global image
characteristics.

This sophisticated combination of attention mechanisms endows our model with several powerful
capabilities that are crucial for accurate COVID-19 detection. The model demonstrates remarkable ability
to automatically identify and focus on regions exhibiting potential COVID-19 manifestations, while
simultaneously maintaining awareness of broader contextual information. Through adaptive channel
weighting, it dynamically emphasizes the most diagnostically relevant features, ensuring that critical
pathological indicators are given appropriate consideration in the decision-making process. The
architecture’s ability to capture both local and global dependencies in the feature representations, while
preserving essential spatial in- formation, results in highly discriminative feature maps that effectively
differentiate between various respiratory conditions.

The effectiveness of this integrated approach is comprehensively demonstrated by our model’s exceptional
performance metrics, achieving a remarkable 99.0% accuracy in COVID-19 detection while maintaining
computational efficiency. Beyond mere numerical performance, our attention mechanism design
significantly enhances the model’s interpretability by generating attention maps that closely align with
radiological expertise. These attention maps not only validate the model’s decision-making process but
also provide valuable visual insights that correspond with established radiological diagnostic patterns,
making our system particularly valuable for clinical applications. This harmonious integration of multiple
attention mechanisms thus represents a significant advancement in automated COVID-19 detection,
offering both superior accuracy and practical clinical utility.

3.3. Feature Fusion and Training Strategy

Our architecture optimizes feature fusion through an adaptive weighted mechanism, dynamically balancing
spatial and channel attention features. The fusion is represented by:

F_fused = a F_spatial + (1 — a) F_channel (8)
where « is a learnable parameter, initially set at 0.5 and adjusted during training to optimize feature
integration. This adaptive method has proven superior to static fusion strategies in managing the diverse

manifestations of COVID-19 in chest X-rays.

We address the challenges of medical image classification with a sophisticated loss function combining
cross-entropy and focal loss:

Litotary = Mlicey + 42 9)
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The loss components are defined as:
LCE = —-X({=1toC)y_ilog(¥_i) (10)
L focal = =X (i=1toC) (1 — y_.D) v y_ilog(§_i) (12)

The training strategy for our model is designed to optimize performance while ensuring robustness and
efficiency We utilize the Adam optimizer, a widely recognized optimization algorithm, combined with
weight decay to prevent overfitting and improve generalization. To further enhance the training process,
we implement a cosine annealing learning rate schedule with warm restarts. This dynamic adjustment of
the learning rate allows the model to escape local minima and converge more effectively. The initial
learning rate is set to 1x10* and is reduced every 10 epochs to facilitate smooth optimization. A batch size
of 32 is employed to balance memory efficiency and convergence speed, and the training is conducted over
100 epochs. Early stopping is applied to terminate training if validation performance ceases to improve,
while gradient clipping is used to stabilize the training process by preventing excessively large gradient
updates.

Throughout the training, the model is evaluated using training and validation curves, which reveal minimal
oscillation and no signs of overfitting. This stability demonstrates the efficacy of the chosen training
strategy and its ability to generalize well to unseen data. The integration of these techniques leads to
exceptional performance, with the model achieving an impressive accuracy of 99.0%. These results
underline the effectiveness of the training strategy in producing a reliable and efficient model suitable for
real-world applications, particularly in medical image analysis where precision is paramount.

Data Processing Pipeline: Our preprocessing pipeline for chest X-ray analysis is designed to optimize
model performance while preserving diagnostic integrity. The preprocessing sequence is mathematically
modeled as:

Xprocessed =N (R(Xraw)) (12)

Initially, images undergo spatial standardization to 224x224 pixels via the R operation, using bi cubic
interpolation to retain essential details critical for diagnosis, particularly for COVID-19. This resolution
balances diagnostic detail retention and computational efficiency. Subsequently, the N operation
normalizes pixel intensities to the [0,1] range, facilitating consistent feature extraction.

Data augmentation, including + 1 5 rotations and horizontal flips with a probability of 0.5, reflects
realistic patient positioning and enhances training data diversity. Intensity adjustments for brightness and
contrast are controlled within [0.8, 1.2], ensuring diagnostic validity after consultations with radiological
experts. Local histogram equalization is also applied to highlight features critical for detecting subtle disease
indicators.

Quality control is maintained through validation checks post-transformation to verify image integrity, using
statistical analysis to ensure no significant artifacts are introduced. This rigorous preprocessing supports
the model’s high accuracy and robustness in detecting COVID-19, achieving a 99.0% diagnostic accuracy
rate.

4. EXPERIMENTAL RESULTS

We conducted comprehensive experiments to evaluate our attention-enhanced deep learning models for
COVID-19 detection. Our analysis includes both the training dynamics and final performance metrics of
the models.

Training Dynamics: The training progression of both models showed interesting characteristics, as
illustrated in Figure 2.
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Figure 2. Training and validation curves showing accuracy and loss progression

The attention-enhanced MobileNet demonstrated exceptional convergence characteristics throughout the
training process, showcasing remarkable learning efficiency and stability. In the initial phase, the model
exhibited rapid learning capabilities, achieving an impressive 97% accuracy within the first epoch - a
significant milestone that indicates the effectiveness of our architectural design. This swift initial convergence
can be attributed to the synergistic interaction between the base MobileNet architecture and our custom
multi-head attention mechanism.

As training progressed, the model demonstrated consistent and robust improvement in its validation
performance. Notably, the validation accuracy showed a steady upward trajectory, ultimately reaching a
peak of 99% by the third epoch. This rapid achievement of near-perfect accuracy is particularly noteworthy
in the context of medical image classification, where such high levels of performance typically require
significantly more training iterations or more complex architectures.

One of the most compelling aspects of the training process was the model’s exceptional stability. The
training exhibited minimal signs of overfitting, which is evidenced by the remark- ably close tracking
between the training and validation curves. This characteristic is particularly valuable in medical diagnostic
applications, where generalization capability is crucial. The close alignment between training and validation
performance suggests that our attention mechanism effectively captures genuine discriminative features
rather than memorizing training data patterns.

The loss trajectory further validates the model’s efficiency and stability. The training process demonstrated
highly effective error reduction, with the loss value consistently decreasing and ultimately stabilizing at
approximately 0.03 in the final epoch. This low and stable loss value, combined with the high accuracy,
indicates that the model not only makes correct pre- dictions but does so with high confidence.
Furthermore, the smooth convergence of the loss function, without significant fluctuations or spikes,
suggests that our learning rate scheduling and optimization strategies were well-tuned for the task.
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These training dynamics are particularly impressive considering the complexity of the multi- class medical
image classification task and the challenging nature of distinguishing between different respiratory
conditions. The model’s ability to achieve such high performance with relatively few epochs not only
demonstrates the effectiveness of our attention mechanism but also has practical implications for clinical
deployment, as it suggests efficient training requirements for potential retraining or fine-tuning in different
clinical settings.

Model Performance Analysis: The confusion matrices (Figure 3) reveal the detailed classification
performance of both models.
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Figure 3. Confusion matrices showing class-wise performance

These results are quantified in Table 3. The experimental results, as shown in Figure 3 and Table 3,
demonstrate the exceptional dis- criminative capabilities of our attention-enhanced MobileNet architecture
across all diagnostic categories. Particularly noteworthy is the model’s perfect performance in Tuberculosis
detection, achieving 100% accuracy with all 428 cases correctly identified, indicating robust feature learning
for this specific pathology. For COVID-19 detection, the model showed remarkable precision at 99.7%

(426 out of 427 cases), highlighting its potential as a reliable screening tool for COVID-19 diagnosis.

Table 3. Class-wise performance metrics for MobileNet

Class Precision Recall F1-score Support
COVID-19 0.997 0.998 0.997 427
Normal 0.996 0.995 0.995 427
Pneumonia 0.960 0.962 0.961 428
Tuberculosis 1.000 1.000 1.000 428

The model maintained similarly high performance for Normal cases with 99.5% accuracy (425/427),
demonstrating its ability to reliably identify healthy patients and minimize false positives. While the
accuracy for Pneumonia cases was slightly lower at 96.0% (411/428), it still represents a clinically
significant level of performance. These quantitative results, further detailed in Table 3, show consistently
high precision, recall, and F1-scores across all classes, with F1-scores ranging from 0.961 to 1.000, indicating
a well-balanced model that maintains both high sensitivity and specificity across different diagnostic
categories. The balanced performance across all metrics and the clear separation between classes visible in
the confusion matrices (Figure 3) suggest that the model has successfully learned to distinguish between
different respiratory conditions while maintaining clinical reliability.

Comparative Analysis: To contextualize our results, we first evaluated traditional transfer learning
approaches and then compared them with our attention-enhanced architectures. Figure 4 presents the
comprehensive comparison of various architectures.
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Figure 4. Comparison of model accuracies across different architectures

Our comparative analysis of different architectural approaches in transfer learning revealed a broad
spectrum of performance. The baseline MobileNet architecture excelled, achieving 96.37% accuracy.
DenseNet121 and InceptionV3 also performed well, with accuracies of 94.68% and 93.74% respectively.
More complex models like InceptionResNetV2, MobileNetV2, Xception, and NASNetMobile showed
performances ranging from 91.87% to 93.33%, with VGG19 at 90.23% and ResNet50 at 85.03%. The
EfficientNetBO0 lagged significantly, recording only 24.97% accuracy.

Introduction of attention mechanisms significantly enhanced model performances, notably our attention-
enhanced MobileNet, which surged to 99.0% accuracy. This model outperformed the base MobileNet by
2.63% and showed substantial improvements over other models like DenseNet121 (4.32%) and
InceptionV3 (5.26%), with the attention-enhanced VGG19 also improving to 86.0% accuracy. These
enhancements demonstrate the profound impact of integrating multi-head attention mechanisms, which
markedly increased classification accuracy and the model’s ability to discern subtle radiological signs
critical for precise COVID-19 diagnosis.

The efficacy of our approach underscores the potential of architectural innovations in boosting the
performance of medical image classification models. Notably, the success of our attention- enhanced
MobileNet highlights the feasibility of achieving superior performance without the need for very deep or
complex architectures, which is vital for practical applications in resource- constrained clinical
environments. These findings validate the integration of multi-head attention with established
architectures, significantly outperforming traditional transfer learning methods.

Ablation Study and Model Analysis: To thoroughly evaluate the effectiveness of our proposed attention
mechanisms and understand the contribution of each component, we conducted a comprehensive ablation
study. This systematic analysis involved progressively incorporating different attention components into
the base architecture and measuring their individual and cumulative effects on model performance. Starting
with the base MobileNet architecture, which achieved a baseline accuracy of 91.2% and F1-score of 0.909,
we systematically integrated each attention component. The results of this progressive enhancement are
presented in Table 4.

Table 4. Ablation study results

Model configuration Accuracy F1-Score Time (ms)
Base MobileNet 0.912 0.909 45
+ Spatial attention 0.934 0.932 52
+ Channel attention 0.945 0.943 58
+ Multi-head attention 0.990 0.990 63

C.U. Miih. Fak. Dergisi, 40(3), Eyliil 2025




The incorporation of a spatial attention mechanism initially boosted the model’s accuracy to 93.4% and F1-
score to 0.932, with only a 7ms increase in inference time, highlighting its role in focusing on critical
regions in chest X-rays for COVID-19 diagnosis.

Adding channel attention further raised performance to 94.5% accuracy and a 0.943 F1- score, with a
reasonable computational overhead increase of 6ms, demonstrating its effective- ness in prioritizing
relevant feature channels.

The integration of multi-head attention significantly enhanced the model, achieving 99.0% accuracy and a
0.990 F1-score. This notable improvement came with an additional 5ms in inference time, totaling 63ms.
Our computational efficiency analysis reveals a compact memory footprint of 14.8MB, an inference time
of 63ms suitable for real-time processing, minimal incremental costs for each attention mechanism relative
to performance gains, and suitability for deployment in resource-limited clinical settings. This ablation
study showcases the effec- tiveness of the multi-stage attention approach, with each component contributing
significantly to state-of-the-art accuracy and maintaining practical computational demands. The results
affirm the model’s balance between performance and efficiency, ideal for clinical applications in COVID-
19 diagnosis.

5. DISCUSSION AND CONCLUSION

This study presents a novel and clinically deployable deep learning architecture for the automated detection
of COVID-19 and other pulmonary conditions from chest X-ray images. Unlike prior approaches that
typically adopt single-stream backbones and limited attention mechanisms, our model introduces a unique
synergy of spatial, channel, and multi-head self-attention mechanisms in conjunction with a dual-backbone
design that combines the representational depth of VGG19 with the computational efficiency of MobileNet.
This integrated attention-enhanced MobileNet architecture achieved an overall diagnostic accuracy of 99%,
surpassing several established benchmarks and demonstrating a significant improvement of 4.2% over
baseline models.

Through comprehensive evaluation on a dataset of 7,132 chest X-ray images, our model achieved
outstanding diagnostic performance across all categories: 99.7% for COVID-19 detection, 100% for
tuberculosis, 99.5% for normal classification, and 96.0% for pneumonia. These results reflect superior
sensitivity, specificity, and robustness compared to standard models such as DenseNet121 and InceptionV3,
with improvements of up to 5.26% in classification accuracy. More importantly, the proposed model is
optimized for real-world clinical deployment, featuring a compact 14.8MB model size and a low inference
time of 63 milliseconds, thereby enabling potential integration in low-resource and mobile healthcare
environments.

Despite these notable advancements, several limitations warrant consideration. First, the dataset used,
although substantial, is derived from a single source and may not fully reflect the diversity encountered in
global clinical settings. Second, the class imbalance—particularly in COVID-19 and tuberculosis
categories—could affect generalization under varying prevalence distributions. Third, since the data
corresponds to specific phases of the COVID-19 pandemic, longitudinal validation across emerging
variants and radiological patterns is essential. Additionally, while attention visualizations offer
interpretability, they may not yet align entirely with radiological expertise. Finally, even though our model
is lightweight, deployment in extremely resource-constrained environments may still necessitate hardware
adaptations.

Looking ahead, several future directions emerge from our findings. Incorporating multimodal data such as
laboratory results, clinical symptoms, and demographic information could enrich diagnostic power. Cross-
institutional validation with datasets from different geographic and demographic populations will further
enhance the model's reliability. Moreover, real-world clinical trials are needed to assess integration
challenges, physician trust, and system adaptability. Enhancing model explainability through advanced
XAl techniques and designing adaptive learning frameworks capable of updating with novel disease
presentations will be vital. Ultimately, expanding to mobile-based diagnostics can extend access to
underserved communities, offering impactful solutions in global healthcare.
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In conclusion, this research demonstrates the effectiveness of strategically combining multiple attention
mechanisms within a hybrid deep learning framework for high-precision medical image classification. The
proposed architecture sets a new standard for COVID-19 detection, achieving both exceptional diagnostic
performance and practical feasibility for clinical use. By addressing both technical and deployment-related
challenges, our model contributes a highly promising tool for pandemic preparedness, respiratory disease
screening, and broader Al-driven diagnostic initiatives. Future work will focus on external validations,
interpretability improvements, and scalable deployment strategies to advance toward clinically integrated,
next-generation diagnostic systems.
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