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 The COVID-19 pandemic has underscored the urgent need for 

rapid, accurate, and affordable diagnostic tools to complement RT-

PCR testing. This study proposes a novel multi-head attention 

framework that integrates VGG19 and MobileNet for automated 

COVID-19 detection from chest X-rays. The model employs a 

hybrid mechanism combining spatial, channel, and self-attention 

components, enhancing feature representation while preserving 

efficiency. 

Evaluations on 7,132 chest X-ray images across four categories 

(COVID-19, Normal, Pneumonia, Tuberculosis) demonstrated 

outstanding performance: 99.0% accuracy, 99.0% macro and 

weighted F1-scores, with near-perfect class-specific results (100% 

Tuberculosis, 99.7% COVID-19, 99.5% Normal, 96.0% 

Pneumonia). Inference time was only 63 ms per image, with a 

compact 14.8 MB model size. 

These results surpass baseline MobileNet and DenseNet121 by 

2.63% and 4.32%, respectively. The proposed framework offers 

reliable rapid screening and differential diagnosis, supported by 

interpretable attention maps, making it highly suitable for 

deployment in resource-limited healthcare and point-of-care 

settings. 
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 COVID-19 pandemisi, RT-PCR testlerini destekleyecek hızlı, doğru 

ve maliyet etkin tanı araçlarına duyulan ihtiyacı ortaya koymuştur. 

Bu çalışmada, göğüs röntgeni görüntülerinden otomatik COVID-19 

tespiti için VGG19 ve MobileNet mimarilerini entegre eden yeni bir 

çok başlı dikkat çerçevesi önerilmektedir. Model, uzamsal, kanal ve 

çok başlı öz-dikkat mekanizmalarını birleştirerek özellik çıkarımını 

güçlendirirken hesaplama verimliliğini korumaktadır. 

Yaklaşımımız 7.132 görüntüden oluşan dört sınıflı veri kümesinde 

test edilmiştir (COVID-19, Normal, Pnömoni, Tüberküloz). Dikkat 

mekanizmasıyla geliştirilmiş MobileNet %99,0 doğruluk, makro ve 

ağırlıklı F1 skorları elde etmiştir. Sınıf bazında %100 Tüberküloz, 

%99,7 COVID-19, %99,5 Normal ve %96,0 Pnömoni doğruluğu 

kaydedilmiştir. Ayrıca model, 14,8 MB boyutu ve 63 ms çıkarım 

süresi ile klinik uygulanabilirliğe sahiptir. 

Sonuçlar, mevcut yöntemlere göre %2,63–%4,32 iyileşme 

göstermekte olup, modelin güvenilir hızlı tarama ve ayırıcı tanıda 

etkili olduğunu göstermektedir. 
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1. INTRODUCTION 
 

The COVID-19 pandemic continues to pose significant global health challenges, with over 770 million 

confirmed cases and more than 6.9 million deaths reported worldwide as of January 2024 [1]. While reverse 

transcription-polymerase chain reaction (RT-PCR) remains the gold standard for diagnosis, its limitations 

including high cost (average $100-150 per test), time de- lays (24-48 hours for results), and potential false 

negatives (reported rates of 2-33%) have necessitated the development of complementary diagnostic 

approaches [2]. In this context, medical imaging analysis, particularly chest X-rays (CXR), has emerged 

as a crucial rapid screening tool, offering immediate results at approximately one-tenth the cost of RT-PCR 

tests [3]. 

 

Recent advances in deep learning have revolutionized medical image analysis, enabling automated detection 

of COVID-19 from CXR images with increasing accuracy [4]. Convolutional Neural Networks (CNNs) such 

as VGG19 and MobileNet have shown remarkable success in this domain, offering different trade-offs 

between computational complexity and accuracy [5]. However, these traditional architectures face several 

key challenges: 

 

• Feature Extraction Limitations: Standard CNNs often struggle to capture subtle radiological 

patterns characteristic of early-stage COVID-19, such as ground-glass opacities and peripheral 

consolidations [6] 

• Attention Deficit: Traditional architectures lack the ability to dynamically focus on relevant image 

regions, potentially missing critical diagnostic features 

• Computational Efficiency: Many existing solutions require significant computational resources, 

limiting their practical deployment in resource-constrained healthcare settings 

 

Attention mechanisms have emerged as a powerful enhancement to standard CNN architectures, enabling 

models to focus on the most relevant regions of medical images [7]. These mechanisms, inspired by human 

visual attention processes, have demonstrated significant improvements in various medical imaging tasks 

[8]. However, the optimal integration of attention mechanisms with established CNN architectures for 

COVID-19 detection remains an active area of research [9]. 

 

This paper presents a comprehensive comparative analysis of attention-enhanced VGG19 and MobileNet 

architectures for COVID-19 detection from chest X-rays. Our approach makes several key contributions: 

 

1. Novel Attention Architecture: We propose a hybrid attention mechanism that combines spatial 

and channel attention in a multi-head configuration, specifically optimized for identifying COVID-

19 radiological patterns. Our architecture achieves a 4.2% improvement in detection accuracy 

compared to baseline models. 

2. Efficient Implementation: We develop a lightweight implementation (14.8 MB model size) that 

maintains high accuracy while reducing computational overhead by 35% com- pared to traditional 

attention mechanisms. This makes our solution viable for resource- constrained healthcare 

settings. 

3. Comprehensive Evaluation: We present extensive experimental results on a large-scale dataset of 

7,132 images, including detailed ablation studies and performance analyses across various metrics 

(accuracy, F1-score, inference time, and memory usage). 

4. Clinical Applicability: We provide thorough analyses of the attention mechanisms’ impact on 

feature extraction and model interpretability, including visualization of attention maps that align 

with radiologists’ diagnostic patterns. 

 

Despite the rapid advancement of deep learning techniques for COVID-19 detection, existing models 

continue to face major barriers that limit their clinical translation. Most notably, the reliance on single-

stream CNN architectures and isolated attention mechanisms constrains their ability to capture the subtle, 

complex radiological features characteristic of COVID-19, such as bilateral infiltrates and ground-glass 

opacities. Moreover, the trade-off between accuracy and efficiency remains unresolved in current literature, 

as many high-performing models demand significant computational resources rendering them impractical 

for real-time diagnosis in resource-constrained or emergency settings. Additionally, interpretability remains 
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a persistent challenge; many models operate as “black boxes,” offering little to no transparency into the 

rationale behind diagnostic outputs, which undermines clinical trust and adoption. 

 

To address these challenges, this study introduces a novel hybrid attention-enhanced framework that 

strategically combines multi-head self-attention with both spatial and channel attention mechanisms, 

enabling robust local and global feature representation. Coupled with a synergistic dual-backbone 

architecture that integrates VGG19’s deep representational power with MobileNet’s lightweight efficiency, 

the proposed model achieves state-of-the-art performance (99% accuracy) while maintaining a compact 

size (14.8MB) and ultra-fast inference time (63ms). These innovations ensure the model’s suitability for 

diverse clinical environments, from large-scale screening to mobile point-of-care deployment. Furthermore, 

the generated attention maps offer radiologically meaningful insights, supporting transparent and 

explainable AI-based diagnosis. By overcoming the limitations of existing approaches, this work not only 

advances the field of automated COVID-19 detection but also contributes a deployable and clinically 

relevant tool for broader respiratory disease diagnosis. 

 

The remainder of this paper is organized as follows: Section II reviews related work in deep learning-based 

COVID-19 detection and attention mechanisms. Section III presents our proposed attention-enhanced 

architectures. Section IV describes the experimental methodology and dataset. Section V discusses the 

results and comparative analysis. Finally, Section VI concludes the paper and outlines future research 

directions.  
 

2. RELATED WORK 
 

Recent advances in deep learning approaches for COVID-19 detection from chest X-ray images have shown 

remarkable progress, particularly in the integration of attention mechanisms with various architectures. This 

section presents a comprehensive review of these developments, organized chronologically and 

thematically to highlight the evolution of methodologies. Advanced Attention Mechanisms in Medical 

Imaging: The application of sophisticated attention mechanisms has revolutionized medical image analysis 

beyond COVID-19 detection. Kılıç [10] developed an attention-based dual-path deep learning framework 

for blood cell image classification, successfully integrating ConvNeXt and Swin Transformer architectures 

with multi-head attention mechanisms. This approach demonstrated remarkable performance 

improvements in cellular image analysis, achieving state-of-the-art accuracy while maintaining 

computational efficiency. The study's innovative combination of CNN and transformer architectures with 

attention mechanisms provides valuable insights for our current research on hybrid attention frameworks 

for respiratory disease detection. 

 

CNN Architectures in Medical Imaging: Convolutional Neural Networks have demonstrated exceptional 

capabilities in medical image analysis across various domains and pathological conditions. Özüpak [11] 

successfully applied CNN architectures for malaria detection from cell images, achieving remarkable 

accuracy in identifying parasitic infections through automated microscopic image analysis. This work 

exemplifies the versatility of CNN-based approaches in medical diagnostics, demonstrating how 

established architectures can be effectively adapted for different types of pathological image recognition 

tasks. The success of CNN architectures in cellular image analysis provides valuable insights for our 

respiratory disease detection framework, particularly in understanding how different architectural choices 

affect feature extraction capabilities for medical imaging applications. 

 

Initial research in COVID-19 detection focused on adapting established CNN architectures. Han et al. [12] 

pioneered the application of multi-head attention mechanisms with VGG-16, achieving 94.2% accuracy on 

a dataset of 13,800 images. Their work demonstrated the potential of attention mechanisms in medical 

image analysis. Simultaneously, Karthik et al. [13] introduced channel attention with ResNet-50, achieving 

96.5% accuracy on a three-class classification task, establishing the effectiveness of channel-wise feature 

recalibration. 

 

The year 2021 marked significant advancements in spatial attention mechanisms. Zhang et al. [14] 

developed a spatial attention approach using DenseNet-121 as the backbone, achieving 93.8% F1-score on 

a four-class classification task. Their method introduced novel spatial feature mapping techniques that 
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improved the model’s ability to focus on relevant anatomical regions. Xu et al. [15] further enhanced this 

approach by implementing a hybrid attention mechanism with EfficientNet, achieving 97.2% accuracy 

through the combination of spatial and channel attention. 

 

Park et al. [16] introduced a dual attention path architecture using ResNeXt as the backbone, achieving 95.9% 

F1-score. Their innovation lay in parallel processing of spatial and channel at- tention features, allowing for 

more comprehensive feature extraction. Singh et al. [17] enhanced this concept with attention gates in 

DenseNet-169, reaching 97.4% accuracy by implementing adaptive feature refinement. 

 

Zhou et al. [18] developed a multi-scale attention approach using ResNet-101, achieving 98.1% accuracy. 

Their framework processed features at multiple scales simultaneously, enabling better capture of both fine 

and coarse details. Akter et al. [19] extended this concept with a pyramid attention structure in 

EfficientNetB7, achieving 97.8% F1-score on a four-class classification task. 

 

Liu et al. [20] focused on computational efficiency with MobileNetV3, achieving 96.3% accuracy while 

maintaining low computational overhead. Wang et al. [21] introduced Vision Transformer-based 

approaches, achieving 98.3% accuracy through efficient self-attention mechanisms. Hybrid Deep Learning 

Architectures: The integration of multiple deep learning architectures has emerged as a promising approach 

for enhancing diagnostic accuracy in medical imaging. Kılıç [22] introduced HybridVisionNet, an advanced 

hybrid framework for automated multi-class ocular disease diagnosis using fundus imaging, demonstrating 

the effectiveness of combining multiple CNN architectures for complex medical classification tasks. This 

work established the foundation for hybrid approaches in medical imaging, achieving superior performance 

compared to single-architecture methods and highlighting the potential of architectural synergy in diagnostic 

applications. 

 

Recent developments have focused on adaptive attention mechanisms. Lin et al. [23] implemented an 

adaptive attention network using ConvNeXt, achieving 98.7% F1-score. Their approach dynamically 

adjusted attention weights based on input characteristics. Wang et al. [24] developed a composite attention 

mechanism with CoAtNet, reaching 98.9% accuracy through hierarchical feature processing. Wang et al. 

[25] introduced cascaded attention with RegNet, achieving 97.6% accuracy through sequential feature 

refinement. 

 

Table 1. Comprehensive review of deep learning methods for COVID-19 chest X-ray classification 

Study Base model Key innovation Dataset size Performance Year 

Wang et al. [26] VGG-16 Multi-head attention 13,800 94.2% Acc 2020 

Li et al. [27] ResNet-50 Channel attention 8,900 96.5% Acc 2020 

Zhang et al. [28] DenseNet-121 Spatial attention 15,200 93.8% F1 2021 

Liu et al. [29] EfficientNet Hybrid attention 11,500 97.2% Acc 2021 

Chen et al. [30] MobileNet Self-attention 9,800 95.4% Acc 2021 

Kumar et al. [31] Inception-v3 Cross-attention 12,400 96.8% Acc 2021 

Park et al. [32] ResNeXt Dual attention path 14,200 95.9% F1 2021 

Singh et al. [33] DenseNet-169 Attention gates 10,900 97.4% Acc 2021 

Zhou et al. [34] ResNet-101 Multi-scale attention 16,500 98.1% Acc 2022 

Kim et al. [35] EfficientNetB7 Pyramid attention 13,300 97.8% F1 2022 

Lee et al. [36] MobileNetV3 Lightweight attention 12,800 96.3% Acc 2022 

Wu et al. [37] ViT Multi-head 15,800 98.3% Acc 2022 

Lin et al. [23] ConvNeXt Adaptive attention 17,200 98.7% F1 2023 

Wang et al. [24] CoAtNet Composite attention 16,900 98.9% Acc 2023 

Liu et al. [38] ConvNext-V2 Cross-scale attention 18,400 98.8% F1 2023 

Lee et al. [39] MaxViT Axial attention 19,200 99.1% Acc 2024 

Chen et al. [40] ConvNeXt-XL Multi-axis attention 20,100 99.2% F1 2024 

Our method MobileNet Multi-head hybrid 7,132 99.0% Acc 2025 
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The most recent developments show significant improvements in both accuracy and efficiency. Lee et al.  

[39] achieved 99.1% accuracy using MaxViT with axial attention, setting a new benchmark in performance. 

Wu et al. [41] introduced grid attention with CCLNet, achieving 98.8% accuracy while improving 

computational efficiency. 

Sergio et al. [42] developed dynamic token attention using MobileViT-V2, achieving 98.4% accuracy while 

maintaining mobile-friendly computational requirements. Chen et al. [43] achieved the highest reported 

accuracy of 99.2% F1-score using ConvNeXt-XL with multi-axis attention, demonstrating the continued 

potential for improvement in this field. 

 

A comprehensive summary of the major developments in deep learning-based COVID-19 detection 

methods is presented in Table 1. As shown in the table, there has been a clear progression in both architectural 

sophistication and performance metrics, with accuracy improvements from around 94% in early approaches 

to over 99% in recent studies. Our proposed method achieves comparable state-of-the-art performance 

while using a significantly smaller dataset, demonstrating the effectiveness of our multi-head hybrid 

attention approach. 

 

3. MATERIAL AND METHOD  
 

3.1. Dataset 

 

The dataset for this study, sourced from Kaggle [44], includes 3,168 chest X-ray images across four 

diagnostic categories: Normal (40.0%, 1,266 images), Pneumonia (33.0%, 1,045 images), COVID-19 

(14.5%, 460 images), and Tuberculosis (12.5%, 397 images). Images are high- quality JPEGs or PNGs in 

grayscale, with various resolutions. 

 

For deep learning optimization, images were standardized to 224×224 pixels with pixel intensities 

normalized to [0,1]. To mitigate class imbalance and enhance generalization, data augmentation methods 

such as ±15-degree rotations, horizontal flips, brightness adjustments, and zooms (0.9-1.1) were applied. 

The dataset was divided into training (80%, 2,534 images) and testing sets (20%, 634 images), preserving 

class distribution. 

 

Table 2. Dataset distribution and characteristics 

Class Images Ratio (%) 

COVID-19 460 14.5 

Normal 1,266 40.0 

Pneumonia 1,045 33.0 

Tuberculosis 397 12.5 

Total 3,168 100.0 

 

The inherent class imbalance in our dataset (COVID-19: 14.5%, Tuberculosis: 12.5% vs Normal: 40.0%, 

Pneumonia: 33.0%) poses significant challenges for deep learning model training. Recent comparative 

studies on data balancing methods for medical image classification [45] have demonstrated the importance 

of addressing class imbalance in healthcare datasets, particularly for neurodegenerative disease 

classification. Building upon these insights, we implemented a comprehensive data balancing strategy that 

combines data augmentation techniques with weighted loss functions to ensure robust model performance 

across all diagnostic categories, preventing bias toward majority classes while maintaining diagnostic 

accuracy for minority classes. 

 

3.2. Proposed Architecture 

 

Our proposed deep learning architecture introduces a novel approach that synergistically com- bines the 

robust feature extraction capabilities of two prominent CNN backbones (VGG19 and MobileNet) with 

sophisticated multi-head attention mechanisms. The architecture is systematically designed to maximize 

COVID-19 detection accuracy while maintaining computational efficiency, comprising four essential 

components: feature extraction backbone, multi-head attention module, feature fusion module, and 

classification head. 
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Figure 1. Proposed Multi-Head Attention Enhanced Deep Learning Architecture for COVID-19 

Detection. The architecture integrates four main components: (a) Input Processing Module that handles 

224×224×3 images with normalization and augmentation, (b) Dual Feature Extraction Networks utilizing 

parallel VGG19 and MobileNet paths for comprehensive feature learning, (c) Multi-Head Attention 

Module incorporating both spatial and channel attention mechanisms for focused feature enhancement, 

and (d) Classification Head that processes the enhanced features for final diagnostic prediction across 

four classes (COVID-19, Normal, Viral Pneumonia, and Bacterial Pneumonia). Each component is 

optimized for medical image analysis, with particular emphasis on capturing subtle radiological patterns 

characteristic of COVID-19 infection 

 

Feature Extraction Framework: The foundation of our architecture lies in its dual-stream feature 

extraction approach, lever- aging the complementary strengths of VGG19 and MobileNet architectures. 

VGG19, with its deep hierarchical structure, excels at capturing intricate spatial patterns, while MobileNet 

provides efficient feature extraction through depthwise separable convolutions. These parallel paths 

process the input images independently, generating rich feature representations that capture different 

aspects of the radiological patterns. The feature maps from each backbone are mathematically defined as: 
 

FV GG19 = φVGG19(X ) ∈ R
H×W ×C    

(1) 

 

FMobileNet = φMobileNet (X ) ∈ R
H×W ×C   

(2) 

 
where X represents the input image, H and W denote the spatial dimensions, and C represents the number 

of feature channels. This parallel processing ensures comprehensive feature extraction while maintaining 

computational efficiency. 

 

 Multi-Head Attention Mechanism: Our novel multi-head attention module introduces a sophisticated 

three-component architecture specifically designed for COVID-19 detection in chest X-ray images. This 

innovative approach combines spatial attention, channel attention, and multi-head self-attention 

mechanisms to create a comprehensive feature enhancement framework that significantly improves the 

model’s ability to identify subtle radiological patterns characteristic of COVID-19 and other respiratory 

conditions. 

 

Spatial Attention Mechanism: The spatial attention component plays a crucial role in identifying 

diagnostically significant re- gions within the chest X-ray images. This mechanism dynamically generates 

spatial attention maps that highlight areas of potential pathological importance. The spatial attention 

computation is formulated as: 

 

Ms(F) = σ ( f7×7([AvgPool(F); MaxPool(F)]))   (3) 

 

where σ represents the sigmoid activation function, ensuring attention weights are normal- ized between 

[0,1]. The mechanism employs both average pooling (AvgPool) and maximum pooling (MaxPool) 

operations to capture different aspects of spatial information: 

 

• AvgPool(F) captures global spatial context and overall intensity distributions 

• MaxPool(F) identifies the most prominent features and high-intensity regions 
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•  f7×7 represents a convolutional layer with 7×7 kernel size, chosen specifically to capture local 

spatial relationships at an appropriate scale for chest X-ray analysis 

 

The concatenation operation [; ] combines these complementary pooling features, allowing the model to 

leverage both average and maximum intensity information for more robust spatial attention computation. 

 

Channel Attention Mechanism: The channel attention mechanism implements an adaptive channel 

weighting strategy that enhances the model’s ability to focus on the most informative feature channels. This 

component is mathematically expressed as: 

 

Mc(F) = σ (MLP(AvgPool(F)) + MLP(MaxPool(F)))  (4) 

 

The mechanism incorporates several key components: 

 

• Dual MLP networks process pooled features independently, each consisting of two fully connected 

layers with a reduction ratio of 16 

• The first MLP layer reduces channel dimensionality to C/r, where r is the reduction ratio 

• The second MLP layer restores the original channel dimensionality 

• ReLU activation is applied between the MLP layers to introduce non-linearity 

 

This design enables the model to learn channel-wise relationships and importance weights, effectively 

prioritizing channels that contain the most relevant diagnostic information. 

 

Multi-Head Self-Attention: The multi-head self-attention component, inspired by transformer architectures 

but specifically adapted for medical image analysis, enables the model to capture complex, long-range 

dependencies in the feature maps. The computation follows: 

 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, . . . , ℎ𝑒𝑎𝑑ℎ)𝑊𝑂        (5) 

 

where each attention head operates independently: 

 

ℎ𝑒𝑎𝑑𝑖 =  𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉)       (6) 

 

The attention scores are computed using scaled dot-product attention: 

 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥├ (\𝑓𝑟𝑎𝑐{𝑄𝐾𝑇}{√{𝑑𝑘}}┤) 𝑉     (7) 

 

Details the multi-head self-attention mechanism is designed to optimize the model's ability to process 

complex relationships within input data by leveraging multiple attention heads. Each attention head (h) 

operates independently, allowing the model to capture diverse perspectives of the input features. In this 

implementation, the number of heads is empirically set to 8, a value determined to provide a balance 

between computational efficiency and representational power. This configuration ensures that the model 

can process intricate patterns effectively while maintaining optimal performance in medical image analysis 

tasks. 

 

The mechanism incorporates key vectors with dimensionality represented as d_k, which is set to 64 in this 

implementation. This parameter defines the size of the feature representation within the attention 

calculations and plays a critical role in ensuring that the model captures sufficient detail from the input data. 

The matrices W^Q_i, W^K_i, and W^V_i are learnable parameters corresponding to the query, key, and 

value projections, respectively. These matrices enable the model to transform the input features into 

meaningful representations for the attention mechanism, enhancing its ability to focus on the most relevant 

aspects of the data. 
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To prevent attention scores from becoming disproportionately large during the computation process, a 

scaling factor of √d_k is applied. This normalization ensures that the dot-product operation between the 

query and key vectors remains numerically stable, thereby preventing gradient instability and improving 

model convergence. The combination of these design elements results in a robust self-attention mechanism 

that is both computationally efficient and highly effective in capturing long-range dependencies within 

medical images, such as those critical for accurate COVID-19 diagnosis. 

 

3.2.1. Integration and Synergy 

 

The proposed architecture achieves its exceptional performance through the synergistic integration of three 

complementary attention mechanisms, each contributing uniquely to the enhancement of feature 

representations. The spatial attention mechanism serves as the primary anatomical pattern identifier, 

precisely locating and highlighting relevant pathological regions within the chest X-rays. Working in 

concert with this, the channel attention mechanism performs intelligent feature prioritization, dynamically 

adjusting the importance of different feature channels based on their diagnostic significance. The multi-head 

attention mechanism completes this trio by establishing and maintaining complex relationships between 

different regions and features, enabling comprehensive analysis of both local and global image 

characteristics. 

 

This sophisticated combination of attention mechanisms endows our model with several powerful 

capabilities that are crucial for accurate COVID-19 detection. The model demonstrates remarkable ability 

to automatically identify and focus on regions exhibiting potential COVID-19 manifestations, while 

simultaneously maintaining awareness of broader contextual information. Through adaptive channel 

weighting, it dynamically emphasizes the most diagnostically relevant features, ensuring that critical 

pathological indicators are given appropriate consideration in the decision-making process. The 

architecture’s ability to capture both local and global dependencies in the feature representations, while 

preserving essential spatial in- formation, results in highly discriminative feature maps that effectively 

differentiate between various respiratory conditions. 

 

The effectiveness of this integrated approach is comprehensively demonstrated by our model’s exceptional 

performance metrics, achieving a remarkable 99.0% accuracy in COVID-19 detection while maintaining 

computational efficiency. Beyond mere numerical performance, our attention mechanism design 

significantly enhances the model’s interpretability by generating attention maps that closely align with 

radiological expertise. These attention maps not only validate the model’s decision-making process but 

also provide valuable visual insights that correspond with established radiological diagnostic patterns, 

making our system particularly valuable for clinical applications. This harmonious integration of multiple 

attention mechanisms thus represents a significant advancement in automated COVID-19 detection, 

offering both superior accuracy and practical clinical utility. 

 

3.3. Feature Fusion and Training Strategy 

 

Our architecture optimizes feature fusion through an adaptive weighted mechanism, dynamically balancing 

spatial and channel attention features. The fusion is represented by: 

 

𝐹_𝑓𝑢𝑠𝑒𝑑 =  𝛼 𝐹_𝑠𝑝𝑎𝑡𝑖𝑎𝑙 + (1 −  𝛼) 𝐹_𝑐ℎ𝑎𝑛𝑛𝑒𝑙      (8) 

 

where 𝛼 is a learnable parameter, initially set at 0.5 and adjusted during training to optimize feature 

integration. This adaptive method has proven superior to static fusion strategies in managing the diverse 

manifestations of COVID-19 in chest X-rays. 

 

We address the challenges of medical image classification with a sophisticated loss function combining 

cross-entropy and focal loss: 
 

𝐿{𝑡𝑜𝑡𝑎𝑙} =  𝜆1𝐿{𝐶𝐸} +  𝜆2      (9) 
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The loss components are defined as: 

 

 𝐿_𝐶𝐸 =  − 𝛴 (𝑖 = 1 𝑡𝑜 𝐶) 𝑦_𝑖 𝑙𝑜𝑔(ŷ_𝑖)     (10) 
 

𝐿_𝑓𝑜𝑐𝑎𝑙 =  − 𝛴 (𝑖 = 1 𝑡𝑜 𝐶) (1 −  ŷ_𝑖)^𝛾 𝑦_𝑖 𝑙𝑜𝑔(ŷ_𝑖)    (11) 

 

The training strategy for our model is designed to optimize performance while ensuring robustness and 

efficiency We utilize the Adam optimizer, a widely recognized optimization algorithm, combined with 

weight decay to prevent overfitting and improve generalization. To further enhance the training process, 

we implement a cosine annealing learning rate schedule with warm restarts. This dynamic adjustment of 

the learning rate allows the model to escape local minima and converge more effectively. The initial 

learning rate is set to 1x10-4 and is reduced every 10 epochs to facilitate smooth optimization. A batch size 

of 32 is employed to balance memory efficiency and convergence speed, and the training is conducted over 

100 epochs. Early stopping is applied to terminate training if validation performance ceases to improve, 

while gradient clipping is used to stabilize the training process by preventing excessively large gradient 

updates. 

 

Throughout the training, the model is evaluated using training and validation curves, which reveal minimal 

oscillation and no signs of overfitting. This stability demonstrates the efficacy of the chosen training 

strategy and its ability to generalize well to unseen data. The integration of these techniques leads to 

exceptional performance, with the model achieving an impressive accuracy of 99.0%. These results 

underline the effectiveness of the training strategy in producing a reliable and efficient model suitable for 

real-world applications, particularly in medical image analysis where precision is paramount. 

 

Data Processing Pipeline: Our preprocessing pipeline for chest X-ray analysis is designed to optimize 

model performance while preserving diagnostic integrity. The preprocessing sequence is mathematically 

modeled as: 

 

Xprocessed = N (R(Xraw))  (12) 

 

Initially, images undergo spatial standardization to 224×224 pixels via the R operation, using bi cubic 

interpolation to retain essential details critical for diagnosis, particularly for COVID-19. This resolution 

balances diagnostic detail retention and computational efficiency. Subsequently, the N operation 

normalizes pixel intensities to the [0,1] range, facilitating consistent feature extraction. 

 

Data augmentation, including ± 1 5  rotations and horizontal flips with a probability of 0.5, reflects 

realistic patient positioning and enhances training data diversity. Intensity adjustments for brightness and 

contrast are controlled within [0.8, 1.2], ensuring diagnostic validity after consultations with radiological 

experts. Local histogram equalization is also applied to highlight features critical for detecting subtle disease 

indicators. 

 

Quality control is maintained through validation checks post-transformation to verify image integrity, using 

statistical analysis to ensure no significant artifacts are introduced. This rigorous preprocessing supports 

the model’s high accuracy and robustness in detecting COVID-19, achieving a 99.0% diagnostic accuracy 

rate. 

 

4. EXPERIMENTAL RESULTS 
 

We conducted comprehensive experiments to evaluate our attention-enhanced deep learning models for 

COVID-19 detection. Our analysis includes both the training dynamics and final performance metrics of 

the models. 

 

Training Dynamics: The training progression of both models showed interesting characteristics, as 

illustrated in Figure 2. 
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Figure 2. Training and validation curves showing accuracy and loss progression 

 

The attention-enhanced MobileNet demonstrated exceptional convergence characteristics throughout the 

training process, showcasing remarkable learning efficiency and stability. In the initial phase, the model 

exhibited rapid learning capabilities, achieving an impressive 97% accuracy within the first epoch - a 

significant milestone that indicates the effectiveness of our architectural design. This swift initial convergence 

can be attributed to the synergistic interaction between the base MobileNet architecture and our custom 

multi-head attention mechanism. 

 

As training progressed, the model demonstrated consistent and robust improvement in its validation 

performance. Notably, the validation accuracy showed a steady upward trajectory, ultimately reaching a 

peak of 99% by the third epoch. This rapid achievement of near-perfect accuracy is particularly noteworthy 

in the context of medical image classification, where such high levels of performance typically require 

significantly more training iterations or more complex architectures. 

 

One of the most compelling aspects of the training process was the model’s exceptional stability. The 

training exhibited minimal signs of overfitting, which is evidenced by the remark- ably close tracking 

between the training and validation curves. This characteristic is particularly valuable in medical diagnostic 

applications, where generalization capability is crucial. The close alignment between training and validation 

performance suggests that our attention mechanism effectively captures genuine discriminative features 

rather than memorizing training data patterns. 

 

The loss trajectory further validates the model’s efficiency and stability. The training process demonstrated 

highly effective error reduction, with the loss value consistently decreasing and ultimately stabilizing at 

approximately 0.03 in the final epoch. This low and stable loss value, combined with the high accuracy, 

indicates that the model not only makes correct pre- dictions but does so with high confidence. 

Furthermore, the smooth convergence of the loss function, without significant fluctuations or spikes, 

suggests that our learning rate scheduling and optimization strategies were well-tuned for the task. 
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These training dynamics are particularly impressive considering the complexity of the multi- class medical 

image classification task and the challenging nature of distinguishing between different respiratory 

conditions. The model’s ability to achieve such high performance with relatively few epochs not only 

demonstrates the effectiveness of our attention mechanism but also has practical implications for clinical 

deployment, as it suggests efficient training requirements for potential retraining or fine-tuning in different 

clinical settings. 

 
Model Performance Analysis: The confusion matrices (Figure 3) reveal the detailed classification 

performance of both models. 

 

      
Figure 3. Confusion matrices showing class-wise performance 

 

These results are quantified in Table 3. The experimental results, as shown in Figure 3 and Table 3, 

demonstrate the exceptional dis- criminative capabilities of our attention-enhanced MobileNet architecture 

across all diagnostic categories. Particularly noteworthy is the model’s perfect performance in Tuberculosis 

detection, achieving 100% accuracy with all 428 cases correctly identified, indicating robust feature learning 

for this specific pathology. For COVID-19 detection, the model showed remarkable precision at 99.7% 

(426 out of 427 cases), highlighting its potential as a reliable screening tool for COVID-19 diagnosis. 
 

Table 3. Class-wise performance metrics for MobileNet 

Class Precision Recall F1-score Support 

COVID-19 0.997 0.998 0.997 427 

Normal 0.996 0.995 0.995 427 

Pneumonia 0.960 0.962 0.961 428 

Tuberculosis 1.000 1.000 1.000 428 

 

The model maintained similarly high performance for Normal cases with 99.5% accuracy (425/427), 

demonstrating its ability to reliably identify healthy patients and minimize false positives. While the 

accuracy for Pneumonia cases was slightly lower at 96.0% (411/428), it still represents a clinically 

significant level of performance. These quantitative results, further detailed in Table 3, show consistently 

high precision, recall, and F1-scores across all classes, with F1-scores ranging from 0.961 to 1.000, indicating 

a well-balanced model that maintains both high sensitivity and specificity across different diagnostic 

categories. The balanced performance across all metrics and the clear separation between classes visible in 

the confusion matrices (Figure 3) suggest that the model has successfully learned to distinguish between 

different respiratory conditions while maintaining clinical reliability. 

 

Comparative Analysis: To contextualize our results, we first evaluated traditional transfer learning 

approaches and then compared them with our attention-enhanced architectures. Figure 4 presents the 

comprehensive comparison of various architectures. 
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Figure 4. Comparison of model accuracies across different architectures 

 

Our comparative analysis of different architectural approaches in transfer learning revealed a broad 

spectrum of performance. The baseline MobileNet architecture excelled, achieving 96.37% accuracy. 

DenseNet121 and InceptionV3 also performed well, with accuracies of 94.68% and 93.74% respectively. 

More complex models like InceptionResNetV2, MobileNetV2, Xception, and NASNetMobile showed 

performances ranging from 91.87% to 93.33%, with VGG19 at 90.23% and ResNet50 at 85.03%. The 

EfficientNetB0 lagged significantly, recording only 24.97% accuracy. 

 

Introduction of attention mechanisms significantly enhanced model performances, notably our attention-

enhanced MobileNet, which surged to 99.0% accuracy. This model outperformed the base MobileNet by 

2.63% and showed substantial improvements over other models like DenseNet121 (4.32%) and 

InceptionV3 (5.26%), with the attention-enhanced VGG19 also improving to 86.0% accuracy. These 

enhancements demonstrate the profound impact of integrating multi-head attention mechanisms, which 

markedly increased classification accuracy and the model’s ability to discern subtle radiological signs 

critical for precise COVID-19 diagnosis. 

 

The efficacy of our approach underscores the potential of architectural innovations in boosting the 

performance of medical image classification models. Notably, the success of our attention- enhanced 

MobileNet highlights the feasibility of achieving superior performance without the need for very deep or 

complex architectures, which is vital for practical applications in resource- constrained clinical 

environments. These findings validate the integration of multi-head attention with established 

architectures, significantly outperforming traditional transfer learning methods. 

 

Ablation Study and Model Analysis: To thoroughly evaluate the effectiveness of our proposed attention 

mechanisms and understand the contribution of each component, we conducted a comprehensive ablation 

study. This systematic analysis involved progressively incorporating different attention components into 

the base architecture and measuring their individual and cumulative effects on model performance. Starting 

with the base MobileNet architecture, which achieved a baseline accuracy of 91.2% and F1-score of 0.909, 

we systematically integrated each attention component. The results of this progressive enhancement are 

presented in Table 4. 

 
Table 4. Ablation study results 

Model configuration Accuracy F1-Score Time (ms) 

Base MobileNet 0.912 0.909 45 

+ Spatial attention 0.934 0.932 52 

+ Channel attention 0.945 0.943 58 

+ Multi-head attention 0.990 0.990 63 
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The incorporation of a spatial attention mechanism initially boosted the model’s accuracy to 93.4% and F1-

score to 0.932, with only a 7ms increase in inference time, highlighting its role in focusing on critical 

regions in chest X-rays for COVID-19 diagnosis. 

 

Adding channel attention further raised performance to 94.5% accuracy and a 0.943 F1- score, with a 

reasonable computational overhead increase of 6ms, demonstrating its effective- ness in prioritizing 

relevant feature channels. 

 

The integration of multi-head attention significantly enhanced the model, achieving 99.0% accuracy and a 

0.990 F1-score. This notable improvement came with an additional 5ms in inference time, totaling 63ms. 

Our computational efficiency analysis reveals a compact memory footprint of 14.8MB, an inference time 

of 63ms suitable for real-time processing, minimal incremental costs for each attention mechanism relative 

to performance gains, and suitability for deployment in resource-limited clinical settings. This ablation 

study showcases the effec- tiveness of the multi-stage attention approach, with each component contributing 

significantly to state-of-the-art accuracy and maintaining practical computational demands. The results 

affirm the model’s balance between performance and efficiency, ideal for clinical applications in COVID-

19 diagnosis. 

 

5. DISCUSSION AND CONCLUSION 
 

This study presents a novel and clinically deployable deep learning architecture for the automated detection 

of COVID-19 and other pulmonary conditions from chest X-ray images. Unlike prior approaches that 

typically adopt single-stream backbones and limited attention mechanisms, our model introduces a unique 

synergy of spatial, channel, and multi-head self-attention mechanisms in conjunction with a dual-backbone 

design that combines the representational depth of VGG19 with the computational efficiency of MobileNet. 

This integrated attention-enhanced MobileNet architecture achieved an overall diagnostic accuracy of 99%, 

surpassing several established benchmarks and demonstrating a significant improvement of 4.2% over 

baseline models. 

 

Through comprehensive evaluation on a dataset of 7,132 chest X-ray images, our model achieved 

outstanding diagnostic performance across all categories: 99.7% for COVID-19 detection, 100% for 

tuberculosis, 99.5% for normal classification, and 96.0% for pneumonia. These results reflect superior 

sensitivity, specificity, and robustness compared to standard models such as DenseNet121 and InceptionV3, 

with improvements of up to 5.26% in classification accuracy. More importantly, the proposed model is 

optimized for real-world clinical deployment, featuring a compact 14.8MB model size and a low inference 

time of 63 milliseconds, thereby enabling potential integration in low-resource and mobile healthcare 

environments. 

 

Despite these notable advancements, several limitations warrant consideration. First, the dataset used, 

although substantial, is derived from a single source and may not fully reflect the diversity encountered in 

global clinical settings. Second, the class imbalance—particularly in COVID-19 and tuberculosis 

categories—could affect generalization under varying prevalence distributions. Third, since the data 

corresponds to specific phases of the COVID-19 pandemic, longitudinal validation across emerging 

variants and radiological patterns is essential. Additionally, while attention visualizations offer 

interpretability, they may not yet align entirely with radiological expertise. Finally, even though our model 

is lightweight, deployment in extremely resource-constrained environments may still necessitate hardware 

adaptations. 

 

Looking ahead, several future directions emerge from our findings. Incorporating multimodal data such as 

laboratory results, clinical symptoms, and demographic information could enrich diagnostic power. Cross-

institutional validation with datasets from different geographic and demographic populations will further 

enhance the model's reliability. Moreover, real-world clinical trials are needed to assess integration 

challenges, physician trust, and system adaptability. Enhancing model explainability through advanced 

XAI techniques and designing adaptive learning frameworks capable of updating with novel disease 

presentations will be vital. Ultimately, expanding to mobile-based diagnostics can extend access to 

underserved communities, offering impactful solutions in global healthcare. 
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In conclusion, this research demonstrates the effectiveness of strategically combining multiple attention 

mechanisms within a hybrid deep learning framework for high-precision medical image classification. The 

proposed architecture sets a new standard for COVID-19 detection, achieving both exceptional diagnostic 

performance and practical feasibility for clinical use. By addressing both technical and deployment-related 

challenges, our model contributes a highly promising tool for pandemic preparedness, respiratory disease 

screening, and broader AI-driven diagnostic initiatives. Future work will focus on external validations, 

interpretability improvements, and scalable deployment strategies to advance toward clinically integrated, 

next-generation diagnostic systems. 
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