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Recent advancements in the field of deep learning have significantly 
improved the driving capabilities of autonomous vehicles. This study 
focuses on the lane detection abilities of autonomous vehicles and 
examines the use of deep learning-based approaches in this context. The 
research compares the lane detection performance of various deep 
learning models, including U-Net, SCNN, ENet, and ENet-SAD, 
utilizing the TuSimple dataset. The models were evaluated using 
various quantitative metrics such as accuracy, precision, sensitivity, F1 
score, and IoU. Extensive experiments have determined that the U-Net 
model exhibited the highest performance with an accuracy rate of 
98.3%. The SCNN model, on the other hand, stood out in terms of
precision, sensitivity, F1 score, and IoU metrics. In terms of inference 
time, the U-Net model was identified as the fastest lane detection model 
with a time of   20.12 ms. These results indicate that the U-Net model 
is particularly suitable for real-time systems requiring low 
computational power. Additionally, a qualitative assessment of lane 
detection success revealed that the SCNN and U-Net models more 
accurately detected pixels where lanes are present, whereas the ENet 
and ENet-SAD models were more prone to false-negative errors. 
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Son yıllarda derin öğrenme alanlarında meydana gelen ilerlemeler, 
otonom araçların sürüş yeteneklerini önemli ölçüde geliştirmiştir. Bu 
çalışma, otonom araçların şerit tespit yeteneklerine odaklanmaktadır ve 
derin öğrenme tabanlı yaklaşımların bu bağlamdaki kullanımını 
incelemektedir. Araştırma kapsamında, TuSimple veri seti kullanılarak 
U-Net, SCNN, ENet ve ENet-SAD gibi çeşitli derin öğrenme 
modellerinin şerit tespiti performansları karşılaştırılmıştır. Modeller, 
doğruluk, hassasiyet, duyarlılık, F1 skoru ve IoU gibi çeşitli nicel 
metrikler kullanılarak değerlendirilmiştir. Yapılan kapsamlı deneyler 
sonucunda, U-Net modelinin %98.3 doğruluk oranı ile en yüksek 
performansı sergilediği tespit edilmiştir. SCNN modeli ise hassasiyet, 
duyarlılık, F1 skoru ve IoU metrikleri açısından öne çıkmıştır. Çıkarım 
süresi açısından değerlendirildiğinde, 20.12 milisaniye ile U-Net 
modelinin en hızlı şerit tespitini gerçekleştiren model olduğu 
belirlenmiştir. Bu sonuçlar, özellikle gerçek zamanlı ve düşük işlem 
gücü gerektiren sistemler için U-Net modelinin tercih edilebileceğini 
göstermektedir. Ayrıca, şerit tespit başarısının nitel değerlendirilmesi 
sonucunda, SCNN ve U-Net modellerinin şeritlerin bulunduğu 
pikselleri daha doğru bir şekilde tespit ettiği, buna karşın ENet ve ENet-
SAD modellerinin false-negative (yanlış negatif) hata yapmaya daha 
meyilli olduğu gözlemlenmiştir. 

Sorumlu Yazar  
Muhammed Said ATAŞ 
msaid.atas@siirt.edu.tr 

 

Anahtar Kelimeler   
Derin öğrenme 
Şerit takibi 
TuSimple 
U-Net 
SCNN 

 

Atıf şekli: ATAŞ, M.S., DOĞAN, Y., 
ÖZDEMİR, C., (2024). Performance 
Comparison of Deep Learning Lane 
Detection Models for Autonomous 
Vehicles. Cukurova University, Journal of 
the Faculty of Engineering, 39(4), 861-
871. 

 



 Performance Comparison of Deep Learning Lane Detection Models for Autonomous Vehicles 

 

- 862 -  Ç.Ü. Müh. Fak. Dergisi, 39(4), Aralık 2024 

1. INTRODUCTION 
 
Recently, research on autonomous vehicles has been advancing rapidly, and it is anticipated that these 
vehicles will find widespread use soon, in harmony with the concept of smart cities [1,2]. Autonomous 
vehicles excel in complex and unpredictable traffic conditions. Their ability to safely and efficiently 
transport passengers in these situations is one of their most significant advantages. In this context, the ability 
of an autonomous vehicle to perceive its surroundings, as shown in Figure 1, is of vital importance. The 
perception system continuously collects, processes, and analyzes environmental data obtained through 
radar, lidar, cameras, and other advanced sensors. This enables the vehicle to instantly monitor its position, 
the objects around it, the movements of other vehicles, and the condition of the road and lanes. The 
processing of multi-modal data facilitates the vehicle's ability to make instantaneous decisions, adjust its 
route, and adapt to changing traffic conditions. The perception system plays a critical role in ensuring the 
vehicle makes optimal decisions regarding safety, efficiency, and comfort, thereby transporting passengers 
to their destinations via the safest and most suitable routes. Among these sensors, camera systems, which 
are also found in leading autonomous vehicles like Tesla and Google Waymo, are particularly effective for 
environmental perception [3,4]. Cameras process high-resolution images to identify environmental objects, 
read traffic signs, and assess road conditions, playing a significant role in these areas. Through cameras, 
lanes can be identified, and this lane tracking enables the driverless vehicle to proceed safely. This 
capability allows the vehicle to stay in its lane and, when necessary, automatically change lanes [5,6]. 
 

 
Figure 1. Overview of Environmental Sensing Technologies Used in Autonomous Vehicles for Road and 

Traffic Perception 
 
Autonomous vehicles and Advanced Driver Assistance Systems (ADAS) aim to enhance safety levels, 
reduce fuel and energy consumption, and lower road traffic emissions. ADAS offers drivers numerous 
support features such as advanced collision warnings and safe lane-changing aids [7,8]. According to the 
World Health Organization, approximately 1.3 million people lose their lives in traffic accidents each year 
[9]. Research indicates that most accidents are due to driver errors [10,11]. The widespread adoption of 
ADAS could significantly reduce the number of such traffic accidents by taking necessary measures in the 
event of a potential accident to prevent it [12]. Lane Departure Warning (LDW), a fundamental feature of 
ADAS, similarly relies on lane detection and tracking algorithms. LDW alerts the driver when the vehicle 
unintentionally crosses lane markings and then redirects the vehicle to the desired safe route. Studies have 
reported a series of challenges and issues associated with the implementation of ADAS and LDW systems, 
among which distortions in road and lane images due to varying lighting conditions play a significant role 
[13]. The existing literature generally presents three main approaches for lane detection: feature-based, 
model-based, and learning-based approaches. The feature-based approach processes attributes such as 
edges, colors, brightness, and textures. These attributes are usually unaffected by road shapes but are more 
sensitive to the amount of ambient light [12,13]. Model-based approaches use global road models to 
accommodate low-level features (pixel values, edges, colors, etc.). These models are resistant to lighting 
effects but are more sensitive to changes in road shapes. Geometric parameters in the model-based approach 
are employed in lane detection [14,15]. On the other hand, the learning-based approach consists of two 
stages: training and inference. During the training phase, a model is created using previously determined 
features (statistical and image processing-based features extracted from images in classical machine 
learning or automatically extracted features from images in deep learning). In the classification phase, road 
images are fed into the model as inputs, and the trained model is expected to detect lanes [16,17].  
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2. MATERIALS AND METHODS  
 
This section provides details regarding the dataset that forms the basis of this study, the model architecture, 
and the training process.  
 
2.1. Dataset 
 
In this study, the TuSimple dataset [18], frequently preferred in the literature for comparing the 
performances of deep learning models, was utilized. It consists of 1-second long video clips recorded on 
U.S. highways under various weather conditions, at different times, and in different traffic conditions. The 
video clips were divided into images using specialized video processing software, producing 20 images per 
second. This process ensured high-quality output and precise frame rate control, enabling consistent and 
reliable preparation of our dataset. It is commonly seen in the literature that the last frame of the video 
sequence is used. The image resolution is 1280×720 pixels. The dataset, approximately 25 GB in size, 
employs a standard splitting method consisting of training (3,626), validation (358), and testing (2,782) 
images to ensure the general validity and comparability of the results. Upon examining the images in the 
dataset, it is observed that the images are taken from highways with 2, 3, 4, and 5 lanes. When preparing 
the masks, labeling was done considering that there could be up to 4 lanes. In the preparation of the masks, 
all backgrounds other than the lanes were assigned a “0” value. A gray pixel value of “2” for the first lane, 
“3” for the second lane, “4” for the third lane, and “5” for the fourth lane was assigned. Figure 2 presents 
an example frame from the dataset and its corresponding mask. 
 

 
Figure 2. The 20th frame of a video clip from the TuSimple training dataset and its corresponding mask 

image where lane values are adjusted to 255 for clarity. 
 
2.2. Models 
 
The models utilized in this study were selected based on their widespread use in lane detection, the 
comparability of their diverse architectures, and their potential for real-time applications. The selection of 
these models was influenced by several factors: U-Net's success in medical image segmentation, SCNN's 
effectiveness in understanding traffic scenes, and the lightweight structures and fast operational 
characteristics of ENet and ENet-SAD. These considerations ensured a comprehensive evaluation of 
different approaches to lane detection, balancing performance with computational efficiency.  
 
In this study, ResNet-based models were deliberately excluded from the scope. The primary reason for this 
decision was the study's focus on comparing lightweight and fast models specifically suitable for real-time 
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applications. ResNet-based models typically require higher computational power and memory due to their 
deeper and more complex structures [19]. While these models often offer high accuracy, their 
computational demands can be prohibitive for real-time processing on devices with limited resources. 
However, the inclusion of ResNet-based models in future studies would allow for a more comprehensive 
evaluation of lane detection performance across a broader spectrum of model architectures, potentially 
offering insights into the trade-offs between model complexity and detection accuracy in various 
application scenarios. In this section, details of the most commonly used deep learning models in lane 
detection problems, i.e. U-Net, SCNN, ENet, and ENet-SAD, are discussed. 
 
U-Net: U-Net is a deep learning model designed for use in applications such as medical imaging and image 
segmentation. It derives its name from the U-shaped structure between the input and output, as can be seen 
in Figure 3. In the U-Net model, while the input and output dimensions are preserved, there is a bottleneck 
structure in the lower layers. U-Net includes parallel connections for each vertical layer between the input 
and output. These connections allow for the restoration of localization information and details lost during 
the encoder phase due to pooling in the decoder phase. Skip connections enhance the model's ability to 
preserve spatial localization and details. In a traditional convolutional deep learning model, as the number 
of filters in the image increases towards the lower layers, spatial information gradually weakens due to the 
reduction in image size resulting from pooling. The skip connections in the U-Net architecture play a key 
role in addressing this issue. U-Net typically consists of two main sections: the encoder and the decoder. 
The encoder section uses convolutional layers to extract feature maps from the input image. The decoder 
uses transposed convolutional layers and skip connections to convert these feature maps into a higher-
resolution output [20]. 
 

 
Figure 3. U-Net architecture [20] 

 
SCNN: The Spatial Convolutional Neural Network (SCNN) is effectively utilized in scenarios where 
traditional Deep Neural Networks (DNNs) fall short, for instance, in highly complex traffic scenes, 
featuring multiple objects of different shapes and sizes [21]. Capable of delivering successful performance 
even in high-resolution images, the SCNN model also possesses the ability to accurately identify complex 
road structures. Fundamentally, DNNs use regional features to extract the meaning of visual content. 
However, these features can fail in objects that are common in traffic scenes, which may be strong in terms 
of shape but lack shape consistency. For example, traffic lane objects may not always be visible despite 
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their distinct geometric structure, or their continuity and consistency of shape may diminish over time due 
to various degradations. In such cases, the prediction performance of DNNs tends to be low. To overcome 
this issue, the SCNN model has been developed to analyze the entire image globally and spatially [21]. 
SCNN employs a local spatial filter that includes a region around each pixel, representing the relationship 
of each pixel with its neighbors. SCNN then uses these spatial relationships to classify objects. Figure 4 
illustrates the architecture of the SCNN model. 
 

 
Figure 4. SCNN model architecture [22] 

 
ENet: ENet is a CNN architecture originally designed for real-time semantic segmentation. This model is 
particularly known for being lightweight and fast, which enhances its usability in real-time applications. 
ENet employs a unique sequential block design along with asymmetric connections in the bottleneck area, 
thereby achieving an effective model with lower computational cost and fewer parameters. The model 
utilizes a starting layer before processing the input data, which transforms the input data into smaller-sized 
feature maps, accelerating the convolutional processes. ENet uses a structure called bottleneck blocks, as 
shown in Figure 5. These blocks perform deeper operations on smaller-sized feature maps. This approach 
reduces computational cost while increasing feature strength. It has been reported that the total number of 
trainable parameters is lower compared to SCNN [22]. ENet is designed to be lightweight and fast, 
primarily for real-time applications such as autonomous vehicles, drones, and similar tasks, necessitating 
the adaptation of the model according to the specific application or dataset [23]. 
 

 
Figure 5. ENet block architecture [24] 

 
ENet-SAD: ENet-SAD introduces a new approach that enhances the self-deep learning capabilities of lane 
detection networks. Hou et al. [25] developed a method for information distillation across different 
networks.  They also expanded the function of information distillation to attention distillation in their works 
[26,27]. Zagoruyko et al. [27] proposed an activation and gradient-based attention distillation mechanism. 
The most notable difference of ENet-SAD from the method proposed by [27] is the transmission of attention 
information across layers through top-down distillation without the need for a teacher network. Therefore, 
the mentioned SAD method follows a different path from previous visual attention approaches that focused 
on feature weights. This method contributes to accelerating the inference time of the base model without 
external labeling or supervision. SAD allows the use of attention maps derived from the network's layers 
as distillation targets. This attention distillation mechanism is typically used to complement segmentation-
based supervised learning. The strength of the SAD model stems from its ability to refine the contextual 
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information of attention maps coming from different layers of the lane detection network. Without SAD, 
attention maps from different layers might only capture the scene's location and outlines, but with the 
addition of SAD, attention maps from lower layers are refined, achieving better representational power for 
deeper layers. The efficacy of SAD has been successfully demonstrated on popular lightweight models. 
  
Training Details: Within the scope of this study, the image sizes were resized to 800x288 for the training 
of the SCNN, ENet, ENet-SAD, and U-Net models. The models were trained over a total of 10 epochs with 
a batch size of 8. The training duration of 10 epochs was chosen to mitigate the risk of overfitting that could 
occur with higher epoch values. For the loss function, a combined loss function consisting of cross-entropy, 
binary cross-entropy, and IOU (Intersection Over Union) loss was utilized for the SCNN, ENet, and ENet-
SAD models. Conversely, the BinaryFocalCrossEntropy loss function was selected for the U-Net model. 
As for the optimization algorithm, Stochastic Gradient Descent (SGD) was used for the SCNN, ENet, and 
ENet-SAD models, while the Adam (adaptive moment estimation) algorithm was chosen for the U-Net 
model. The learning rate for the models during the training phase was fixed at 0.01. All deep learning 
models were trained and tested on a laptop with an RTX 3060 graphics card, 16 GB RAM, and an AMD 
Ryzen 5 5800H processor, running the Windows 10 operating system. 
 
Metrics: In this section, the metrics used to evaluate the performance of the models in lane detection tasks 
are discussed. In this context, fundamental metrics such as accuracy, precision, recall, F1 score, and IoU 
have been utilized. These metrics will provide a comprehensive assessment and comparative analysis of 
each model's reliability and effectiveness in lane detection tasks. The formulas for these performance 
metrics involve metrics like True Positive (TP), True Negative (TN), False Positive (FP), and False 
Negative (FN). Understanding what these metrics represent in the context of lane detection is crucial 
because, as can be inferred from Figure 7, the lane detection problem is more complex than classic 
classification problems. 
 

 
Figure 6. A ground-truth lane mask taken from the TuSimple dataset 

 

 
Figure 7. Visualization of SCNN Model Output on a Test Image from the TuSimple Dataset, 

Highlighting True Positives, False Positives, and False Negatives 
 

In Figure 6, the lane masks shown in white are the ground-truth lane masks that we used in the model's 
training and expect the model to detect. The red lines in Figure 7 indicate lanes that the model was supposed 
to find but failed to detect. In this case, the pixels in the red lines are interpreted as false-negative. The 
yellow lane lines represent the lines that the model detected as lanes but do not have a counterpart in the 
basic truth. That is, the deep learning model has generated a false alarm, indicating a false-positive situation. 
The purple lines are where the model's predictions overlap or intersect with the basic truth, meaning the 
pixels in purple are considered true-positive. Theoretically, the success of a model is directly related to the 
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density of the purple pixels. The remaining original pixels in the image, not artificially colored, are 
considered true-negative. This situation represents pixels that overlap with the black areas in Figure 6. 
Accuracy: A metric that shows how accurately (TP+TN) a model classifies the total number of samples 
(TP+TN+FP+FN). It is also used to measure the overall performance of the model. However, if the dataset 
is imbalanced, accuracy may not properly reflect the model's performance. Equation (1) demonstrates how 
to calculate the accuracy formula. Essentially, this metric calculates the extent to which the pixels predicted 
by the model as lanes resemble/overlap with the ground-truth-masked pixels. This involves dividing the 
total number of similar/overlapping pixels by the total number of pixels in the image matrix. 
 

𝐴 ൌ
ሺ𝑇𝑃 ൅ 𝑇𝑁ሻ

ሺ𝑇𝑃 ൅ 𝐹𝑃 ൅ 𝑇𝑁 ൅ 𝐹𝑁ሻ
 (1)

 
Precision: A measure of the model's level of generating false alarms. For instance, in the lane detection 
problem, having fewer yellow areas as indicated in Figure 7 is considered a measure of the model's higher 
precision. Thus, the precision value indicates how many of the pixels predicted as positive by the model 
are actually positive. 
 

𝑃 ൌ
𝑇𝑃

𝑇𝑃 ൅ 𝐹𝑃
 (2)

 
Recall: An indicator of the model's rate of making fatal errors, namely false-negative predictions. In the 
lane detection problem, the goal is to minimize the density of the red pixels seen in Figure 7. In this case, 
the model's recall is considered to be increased. Typically, a high recall value is expected for the model in 
situations where the cost of false negatives is high. 
 

𝑅 ൌ
𝑇𝑃

𝑇𝑃 ൅ 𝐹𝑁
 (3)

 
F1 Score: The F1 score is used as a metric that combines the precision and recall performance of a 
classification model. This score helps evaluate the overall classification performance of the model by 
balancing these two metrics. 
 

𝐹1 ൌ
2 𝑥 ሺPrecision 𝑥 Recallሻ

Precision ൅ Recall
 (4)

 
Intersection over Union(IoU): As illustrated in Figure 8, IoU represents the ratio of the intersection to the 
union in set theory. Similarly, the IoU metric calculates the ratio of the area overlapped/intersected by the 
pixels predicted by the model with the ground-truth pixels (purple pixels) to the total area shown in all 
colors (purple + yellow + red) in Figure 7. Accordingly, a higher TP value indicates that the model has 
predicted lanes with higher accuracy.  
 

 
Figure 8. Depicts the IoU metric as a set 
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𝐼𝑜𝑈 ൌ
𝑇𝑃

𝑇𝑃 ൅ 𝐹𝑃 ൅ 𝐹𝑁
 (5)

 
3. EXPERIMENTAL RESULTS 
 
This study involves training and comparing four distinct lane detection models using the TuSimple dataset 
to evaluate their performance in detecting lanes. The evaluation of these models encompasses both 
objective measures, including standard success metrics and real-time inference speeds, and subjective 
assessments as depicted in Figure 10. Table 1 presents a comparative analysis of the lane detection 
capabilities of the U-Net, SCNN, ENet, and ENet-SAD models, utilizing metrics such as accuracy, 
precision, recall, F1-score, and IoU for performance evaluation. The models, after being trained over 10 
epochs, were subjected to tests using a total of 2,782 images from the test directory of the TuSimple dataset. 
The findings are systematically displayed in Table 1, with the highest achieving scores in each model's 
context being prominently marked in bold across the appropriate rows and columns. 
 
Table 1. Comparative analysis of lane detection model performances on the TuSimple dataset using 
accuracy, precision, recall, F1-score, and IoU metrics 

Models Accuracy Precision Recall F1-Score IoU 
U-Net 0.983 0.805 0.734 0.767 0.623 
SCNN 0.938 0.946 0.900 0.919 0.879 
ENet 0.782 0.426 0.479 0.445 0.321 

ENet-SAD 0.756 0.473 0.465 0.466 0.330 
 
According to Table 1, the U-Net model achieves the highest accuracy score, followed by the SCNN model 
with an accuracy value of 0.938. In terms of precision, SCNN leads with a value of 0.946, followed by U-
Net at 0.805 precision. ENet and ENet-SAD models exhibit weaker precision performance, with ENet-SAD 
being slightly more precise than the ENet model. Regarding the recall criterion, SCNN and U-Net secure 
the top two positions with values of 0.900 and 0.734, respectively. ENet-SAD falls behind ENet in terms 
of recall. In the context of F1-Score, SCNN again takes the lead with a value of 0.919, and U-Net follows 
with a score of 0.767. ENet-SAD outperforms the ENet model in this metric as well. For the Intersection 
over Union (IoU) criterion, SCNN ranks first with a score of 0.879, with U-Net in second place at 0.623. 
ENet-SAD and ENet models occupy the third and fourth positions, respectively. In summary, SCNN, with 
the highest scores, emerges as the best-performing model according to Table 1. The inclusion of the VGG-
16 [28] model contributes to SCNN outperforming the other models. However, it's essential to note that the 
VGG-16 model's substantial size could potentially increase the inference time. Figure 9 provides insight 
into the average inference speed per image in milliseconds for the models. Notably, despite its high 
accuracy performance, SCNN exhibits a slower inference speed at 61.11 ms. ENet-SAD and ENet models 
follow with average inference times of 50.32 ms and 48.52 ms, respectively. U-Net stands out as the fastest 
model with an inference speed of 20.12 ms.  
 

 
Figure 8. Average inference time comparison of lane detection models (U-Net, SCNN, ENet, ENet-SAD) 

on the TuSimple dataset 
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Figure 10 illustrates the lane detection performances of the SCNN, U-Net, ENet, and ENet-SAD models in 
the context of ground truth for four randomly selected test images from the TuSimple dataset. Purple-
colored pixels indicate the success of lane detection as measured by IoU. As evident from Figure 10, the 
purple lanes are more prominent, especially in the SCNN and U-Net models. In the ENet and ENet-SAD 
models, red lanes predominate, indicating relatively weaker lane detection capabilities for these models. It 
is observed that these findings align with the objective results presented in Table 1.  
 
Qualitative analysis reveals significant insights into each model's performance. SCNN and U-Net 
demonstrated superior lane pixel detection accuracy, while ENet and ENet-SAD showed higher false-
negative rates. This difference stems from the models' architectural characteristics. SCNN's spatial design 
and VGG-16 backbone enable effective capture of long-range spatial relationships, crucial for continuous 
lane detection. U-Net's skip connections preserve fine-grained spatial information, contributing to its high 
accuracy. In contrast, ENet and ENet-SAD, designed for efficiency, struggle with false-negatives, likely 
due to their compact architectures limiting full context capture. These results highlight the trade-off 
between model size, detection accuracy, and real-time performance in lane detection applications. 
 

 
Figure 10. Visual comparison of lane detection results for U-Net, SCNN, ENet, and ENet-SAD models 

on sample images from the TuSimple dataset 
 
4. CONCLUSIONS 
 
In this study, four different lane detection models (U-Net, SCNN, ENet, and ENet-SAD) were trained on 
the TuSimple dataset, and their lane detection performances were compared. The models' performances 
were evaluated using success metrics such as accuracy, precision, recall, F1-score, IoU, and real-time 
inference time. As a result, it can be concluded that the SCNN model is the best-performing model, 
particularly due to its highest accuracy and strong performance in other metrics. However, considering the 
significance of inference time, especially for systems with limited processing power, the U-Net model may 
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be preferred for real-time inference. Furthermore, as shown in Figure 10, both the SCNN and U-Net models 
demonstrate more significant lane detection than the ENet and ENet-SAD models, which is consistent with 
the objective results reported in Table 1. Our next work will include evaluating the models on a variety of 
datasets, building novel and faster lane recognition models, and implementing real-world lane detection 
applications. 
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